• Title/Summary/Keyword: Normal values

Search Result 3,113, Processing Time 0.036 seconds

Comparison of Univariate Kriging Algorithms for GIS-based Thematic Mapping with Ground Survey Data (현장 조사 자료를 이용한 GIS 기반 주제도 작성을 위한 단변량 크리깅 기법의 비교)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.321-338
    • /
    • 2009
  • The objective of this paper is to compare spatial prediction capabilities of univariate kriging algorithms for generating GIS-based thematic maps from ground survey data with asymmetric distributions. Four univariate kriging algorithms including traditional ordinary kriging, three non-linear transform-based kriging algorithms such as log-normal kriging, multi-Gaussian kriging and indicator kriging are applied for spatial interpolation of geochemical As and Pb elements. Cross validation based on a leave-one-out approach is applied and then prediction errors are computed. The impact of the sampling density of the ground survey data on the prediction errors are also investigated. Through the case study, indicator kriging showed the smallest prediction errors and superior prediction capabilities of very low and very high values. Other non-linear transform based kriging algorithms yielded better prediction capabilities than traditional ordinary kriging. Log-normal kriging which has been widely applied, however, produced biased estimation results (overall, overestimation). It is expected that such quantitative comparison results would be effectively used for the selection of an optimal kriging algorithm for spatial interpolation of ground survey data with asymmetric distributions.

Effects of Methadone Maintenance Therapy on Thyroid Function of Adult Men

  • Bozchelou, Shahrzad;Delirrad, Mohammad
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.9-12
    • /
    • 2019
  • One of the major challenges in methadone maintenance therapy (MMT) for drug dependence is the physiological side effects on endocrine hormones. Because of the key role of the thyroid gland in the normal functioning of the human body and brain, this study examined the effect of MMT on thyroid function. Thyroid hormones (T3, T4, and thyroid-stimulating hormone (TSH)) were evaluated in normal and user treated with MMT who were referred to the Province Clinical & Pathology Center of Urmia, Iran. The study was conducted for three months using the Case Series method. A total of 270 samples were collected, 215 were from individuals who were not treated, whereas 55 were from men treated with methadone. Average levels of T3 and T4 in non-treated sample of men are $1.34{\pm}0.02ng/mL$ and $90.96{\pm}1.38ng/mL$ while the corresponding values for patients treated with methadone are $1.39{\pm}0.04ng/mL$ for T3 and $94.57{\pm}2.72ng/mL$ for T4. Mean TSH levels of the non-treated group and the methadone consuming group were $1.75{\pm}0.08{\mu}IU/mL$ and $3.17{\pm}0.45{\mu}IU/mL$, respectively. These results indicate that although men treated with methadone had higher levels of T3, T4, and TSH than normal individuals, only the difference in TSH level was significant. The importance of this difference among individuals on methadone maintenance programs should be investigated in larger samples over long periods of time. Additionally, the effects of methadone treatment on women should be examined.

Autumn olive (Elaeagnus umbellata Thunb.) berry reduces fasting and postprandial glucose levels in mice

  • Kim, Jung-In;Baek, Hee-Jin;Han, Do-Won;Yun, Jeong-A
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Fasting and postprandial hyperglycemia should be controlled to avoid complications of diabetes mellitus. This study investigated the effects of autumn olive (Elaeagnus umbellata Thunb.) berry (AOB) on fasting and postprandial hyperglycemia in mice. MATERIALS/METHODS: In vitro ${\alpha}$-glucosidase inhibitory effect of AOB was determined. Maltose solution (2 g/kg) with and without AOB extract at 500 mg/kg or acarbose at 50 mg/kg was orally administered to normal mice after overnight fasting and glucose levels were measured. To study the effects of chronic consumption of AOB, db/db mice received the basal diet or a diet containing AOB extract at 0.4% or 0.8%, or acarbose at 0.04% for 7 weeks. Blood glycated hemoglobin and serum glucose and insulin levels were measured. Expression of adiponectin protein in epididymal white adipose tissue was determined by Western blotting. RESULTS: In vitro inhibitory effect of AOB extract on ${\alpha}$-glucosidase was 92% as strong as that of acarbose. The AOB extract (500 mg/kg) or acarbose (50 mg/kg) significantly suppressed the postprandial rise of blood glucose after maltose challenge and the area under the glycemic response curve in normal mice. The AOB extract at 0.4% or 0.8% of diet or acarbose at 0.04% of diet significantly lowered levels of serum glucose and blood glycated hemoglobin and homeostasis model assessment for insulin resistance values in db/db mice. The expression of adiponectin protein in adipose tissue was significantly elevated by the consumption of AOB at 0.8% of diet. CONCLUSIONS: Autumn olive (E. umbellata Thunb.) berry may reduce postprandial hyperglycemia by inhibiting ${\alpha}$-glucosidase in normal mice. Chronic consumption of AOB may alleviate fasting hyperglycemia in db/db mice partly by inhibiting ${\alpha}$-glucosidase and upregulating adiponectin expression.

Effects of Bamboo Stepping Exercise on Blood Pressure in the Elderly (대나무 밟기 운동이 노인의 혈압에 미치는 영향)

  • Song, Seongin;Goo, Bongoh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2019
  • Purpose : This study investigated the effect of bamboo stepping exercises on the blood pressure of the elderly. This study was performed for 8 weeks. Methods : The study participants included 25 people aged 65 and over. Of the participants, 16 were in the hypertensive elderly group and 9 were in the normal blood pressure elderly group. The participants stepped on semicircular bamboo for 20 minutes 3 times a week for 8 weeks. The participants' blood pressure was measured 3 times before and after 8 weeks of exercise. The mean values of the 3 before and after measurements were compared and analyzed statistically. Results : The systolic blood pressure of the hypertensive elderly group decreased significantly from $134.6{\pm}21.1mmHg$ to $119.9{\pm}18.1mmHg$ (p<.05). The diastolic blood pressure of the hypertensive elderly group decreased from $70.2{\pm}10.5mmHg$ to $66.1{\pm}9.8mmHg$, but the difference was not significant. The systolic blood pressure of the normal blood pressure elderly group decreased significantly from $127.2{\pm}18.7mmHg$ to $115.5{\pm}19mmHg$ (p<.05). The diastolic blood pressure of the normal blood pressure elderly group decreased from $72.6{\pm}11.3mmHg$ to $68.2{\pm}12mmHg$, but the decrease was not significant. Conclusion : After completing 8 weeks of the bamboo stepping exercises, the elderly participants' systolic blood pressure was effectively reduced. Today, lifestyle modifications, such as daily exercise, are necessary to control the blood pressure of the elderly. We hope that the bamboo stepping exercises, which are easy to perform and are not restricted by place and time, will become part of the elderly health policy.

The Functional Role of the Corticospinal Track in Relation to Motor Functions in Chronic Stroke Patients (만성 뇌졸중 환자에서 피질 척수로와 운동 능력의 상관관계 연구)

  • Yeo, Sang-Seok
    • PNF and Movement
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2014
  • Purpose: The corticospinal tract (CST) is known to be an important pyramidal tract for walking and motor function. However, very little is known about the functional role of the CST in the recovery of motor function. In the current study, we investigated the relation between the CST and motor function in chronic hemiparetic stroke patients. Methods: Fifty-four patients and 20 normal subjects were recruited. The Functional Ambulation Category (FAC) was used in measurement of the walking ability. We classified patients into three groups according to the ability to walk independently: group A, patients who could not walk independently (FAC: 0-2); group B, patients who could walk independently (FAC: 3); and group C, patd walk functionally (stairs and uneven surfaces, FAC 4-5). The Motricity Index (MI) was used to measure the motor function of the affected upper and lower extremities (maximum score: 100). The fractional anisotropy (FA) value, apparent diffusion coefficient (ADC) value, and fiber volume of the CST were used for the diffusion tensor imaging (DTI) parameters. Results: In terms of the CST of the unaffected hemisphere, the FA value of group A was significantly lower than that of normal controls (p <0.05). The fiber volume of group C was significantly higher than that of normal controls (p <0.05). In contrast, the ADC values of all patient groups and the control group did not show any difference (p >0.05). In terms of lower MI and total MI, significant differences were observed between all patient groups (p <0.05). In addition, significant differences in terms of the upper MI scores were observed between groups A and C and between groups B and C (p <0.05); however, no significant difference was observed between groups A and B (p>0.05). Conclusion: The increased fiber volume of the CST in the unaffected hemisphere appears to be related to functional walking ability in chronic stroke patients. This result would be useful for elucidation of the neural recovery mechanism of walking and the investigation of new modalities for the recovery of walking following a stroke with CST injury.

Real-Time Fault Detection in Discrete Manufacturing Systems Via LSTM Model based on PLC Digital Control Signals (PLC 디지털 제어 신호를 통한 LSTM기반의 이산 생산 공정의 실시간 고장 상태 감지)

  • Song, Yong-Uk;Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.

Fractal dimension analysis on CBCT scans for detecting low bone mineral density in postmenopausal women

  • Carvalho, Bruno Fontenele;de Castro, Julia Goncalves Koehne;de Melo, Nilce Santos;Figueiredo, Paulo Tadeu de Souza;Moreira-Mesquita, Carla Ruffeil;de Paula, Ana Patricia;Sindeaux, Rafael;Leite, Andre Ferreira
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.53-60
    • /
    • 2022
  • Purpose: The aim of this study was to compare the fractal dimension (FD) measured at 2 bone sites (second cervical vertebra and mandible) on cone-beam computed tomography (CBCT). The research question was whether FD could serve as an accessory tool to refer postmenopausal women for densitometric analysis. Therefore, the reliability and accuracy of FD were evaluated. Materials and Methods: In total, 103 postmenopausal women were evaluated, of whom 52 had normal bone mineral density and 51 had osteoporosis, according to dual X-ray absorptiometry of the lumbar spine and hip. On the CBCT scans, 2 regions of interest were selected for FD analysis: 1 at the second cervical vertebra and 1 located at the mandible. The correlations between both measurements, intra- and inter-observer agreement, and the accuracy of the measurements were calculated. A P value less than 0.05 was considered to indicate statistical significance for all tests. Results: The mean FD values were significantly lower at the mandibular region of interest in osteoporotic patients than in individuals with normal bone mineral density. The areas under the curve were 0.644 (P=0.008) and 0.531 (P=0.720) for the mandibular and vertebral sites, respectively. Conclusion: FD at the vertebral site could not be used as an adjuvant tool to refer women for osteoporosis investigation. Although FD differed between women with normal BMD and osteoporosis at the mandibular site, it demonstrated low accuracy and reliability.

Test-Retest Reliability of Level-Specific CE-Chirp Auditory Brainstem Response in Normal-Hearing Adults

  • Jamal, Fatin Nabilah;Dzulkarnain, Ahmad Aidil Arafat;Shahrudin, Fatin Amira;Marzuki, Muhammad Nasrullah
    • Journal of Audiology & Otology
    • /
    • v.25 no.1
    • /
    • pp.14-21
    • /
    • 2021
  • Background and Objectives: There is growing interest in the use of the Level-specific (LS) CE-Chirp® stimulus in auditory brainstem response (ABR) due to its ability to produce prominent ABR waves with robust amplitudes. There are no known studies that investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus. The present study aims to investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus and compare its reliability with the ABR to standard click stimulus at multiple intensity levels in normal-hearing adults. Subjects and Methods: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC). Results: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent. Conclusions: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.

Test-Retest Reliability of Level-Specific CE-Chirp Auditory Brainstem Response in Normal-Hearing Adults

  • Jamal, Fatin Nabilah;Dzulkarnain, Ahmad Aidil Arafat;Shahrudin, Fatin Amira;Marzuki, Muhammad Nasrullah
    • Korean Journal of Audiology
    • /
    • v.25 no.1
    • /
    • pp.14-21
    • /
    • 2021
  • Background and Objectives: There is growing interest in the use of the Level-specific (LS) CE-Chirp® stimulus in auditory brainstem response (ABR) due to its ability to produce prominent ABR waves with robust amplitudes. There are no known studies that investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus. The present study aims to investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus and compare its reliability with the ABR to standard click stimulus at multiple intensity levels in normal-hearing adults. Subjects and Methods: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC). Results: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent. Conclusions: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.

Classification of Respiratory States based on Visual Information using Deep Learning (심층학습을 이용한 영상정보 기반 호흡신호 분류)

  • Song, Joohyun;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.296-302
    • /
    • 2021
  • This paper proposes an approach to the classification of respiratory states of humans based on visual information. An ultra-wide-band radar sensor acquired respiration signals, and the respiratory states were classified based on two-dimensional (2D) images instead of one-dimensional (1D) vectors. The 1D vector-based classification of respiratory states has limitations in cases of various types of normal respiration. The deep neural network model was employed for the classification, and the model learned the 2D images of respiration signals. Conventional classification methods use the value of the quantified respiration values or a variation of them based on regression or deep learning techniques. This paper used 2D images of the respiration signals, and the accuracy of the classification showed a 10% improvement compared to the method based on a 1D vector representation of the respiration signals. In the classification experiment, the respiration states were categorized into three classes, normal-1, normal-2, and abnormal respiration.