• Title/Summary/Keyword: Normal asphalt mixture

Search Result 19, Processing Time 0.019 seconds

Evaluation of Moisture Susceptibility of Porous Hot Mixed Asphalt Mixtures with Hydrated Lime using Non-destructive Impact Test (비파괴 충격파 시험을 통한 소석회 첨가 투수성 가열 아스팔트 혼합물의 수분민감성 평가)

  • Kim, Dowan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.77-87
    • /
    • 2015
  • PURPOSES: It is theoretically well known all over the world, that porous hot mixed asphalt (HMA) with hydrated Lime improves moisture and rutting resistance, and reduces pothole occurrence frequency, as well as the life cycle cost (LCC). METHODS : Addictive in the two different formations of the liquid anti-stripping Agent and powder Hydrated-Lime was applied in this investigation in order to obtain relatively clear results according to their types and conditions. Firstly, the moisture conditions were set, and applied to the porous HMA mixtures with hydrated lime (anti-stripping agent). Next, it was followed by a non-destructive test with the application of three freeze-thaw cycles, which were individually carried out thrice to compare the results of the dynamic moduli. Lastly, the hydrated lime effect related to moisture sensibility to porous HMA has been verified through the analysis of the modulus results regarding the change rate of dynamic modulus per n-cycle. RESULTS: It is clear from this investigation, that the dynamic modulus is inversely proportional to the change in temperature, as the graph representing the rigidity of the thermorheologically simple (TRS) material showed gradual decline of the dynamic modulus with the increase in temperature. CONCLUSIONS: The porous HMA mixture with the anti-stripping agent (hydrated Lime) has been found to be more moisture resistant to freezing and thawing than the normal porous HMA mixture. It is clear that the hydrated lime helps the HMA mixture to improve its fatigue resistance.

Properties of SBS-modified Warm-mix Asphalt Binders (SBS 개질 준고온 아스팔트 바인더의 특성)

  • Kim, Sung Un;Lee, Sung Jin;Youn, Yeo;Kim, Kwang Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.19-24
    • /
    • 2014
  • PURPOSES : The study objective was to evaluate rheology and physical properties of SBS-modified warm-mix asphalt (WMA) binders in comparison with hot-mix asphalt (HMA) binders. METHODS : Four different SBS polymers were used to prepare polymer-modified asphalt (PMA) binders, and three different warm-mix additives (WAD) were used to prepare a total of 12 WMA PMA binders. The kinematic viscosity was measured at 115, $135^{\circ}C$. The PG was determined using DSR and BBR. The pass/fail (P/F) temperatures for high and low PG grading were evaluated for HMA PMA and WMA PMA binders. RESULTS : PG 76-22 binders could be prepared by modifying the base binder (PG 64-22) using 4.5 wt% of SBS. The kinematic viscosity (KV) of SBS PMA was increased by 3 times higher than that of base asphalt. The SBS PMA with WAD showed 10% lower KV than that of the normal SBS PMA at $115^{\circ}C$ The high P/F temperatures showed almost no difference between HMA PMA and WMA PMA binders. The high P/F temperature showed very high correlations with KV ($R^2$ > 0.97). The result of SBS modification caused increase of low P/F temperature by $2.7^{\circ}C$ on average. CONCLUSIONS : Since the PMA with WAD showed 10% lower KV than normal (HMA) PMA at $115^{\circ}C$, reducing PMA mixture temperature down to a WMA level was possible in this study. The higher KV binders showed the higher P/F temperature. There was almost no change in high P/F temperature due to the use of WAD. The SBS PMA, showing an increased low P/F temperature, might show somewhat poorer performance at low-temperature, even though the lower PG grade was staying at the same level, i.e., $-22^{\circ}C$.

A Study on the Safety and Comfort of Pedestrians according to the Type of Sidewalk Pavement (보도포장의 종류에 따른 보행자의 안전성 및 쾌적감에 대한 연구)

  • Choi, Jae Jin
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.66-71
    • /
    • 2015
  • Safety, resilience and comfort of pedestrian were assessed by the British Pendulum Test and SB/GB factor test at 8 kinds of sidewalk pavement. Sidewalk paving materials were normal concrete, porous concrete, concrete block, soil concrete, asphalt, rubber chip/resin mixture, wood chip/resin mixture and floor tile. In addition, a survey was conducted to investigate the perception of pedestrians on the sidewalk paving material. As a result, while the skid resistance value was measured in the most 60BPN above, the floor tile showed a low value of about 30BPN. The ratios of SB factor to GB factor of the elastic pavements(rubber/resin mixture and wood chip/resin mixture) appeared to be relatively large when compared with those of the conventional sidewalks. The survey showed that respondents perceived as more safe and comfortable elastic pavements compared to conventional pavements. Approximately 50% of respondents answered that hardened soil pavement was the most environmentally friendly.

Tensile Strength of Polymer-Modified Asphalt Concrete at Low-Temperature (폴리머 개질아스팔트 콘크리트의 저온 인장강도 특성)

  • Doh, Young-Soo;Kwon, Seung-Zoon;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.35-42
    • /
    • 2002
  • Many temperature-related problems are created in asphalt pavement due to the low temperature. In particular, loss of tensile strength due to low temperature is known to be responsible for thermal failure of pavements in cold regions under $-20^{\circ}C$. The objective of this study is to evaluate characteristics of resistance against low-temperature cracking of polymer asphalt concrete mixtures modified with LDPE and SBS. The test results showed that the mixtures had the maximum indirect tensile strength(ITS) at low temperature ranging from $-10^{\circ}C. It was proved through ITS test that the stress due to differential thermal contraction over the tensile strength did generate internal damage at the temperature below $-20^{\circ}C$. It was shown that the asphalt mixtures modified with polymer had better ITS than the normal asphalt mixture at the temperature below $-20^{\circ}C$. Thus the effect of modification was revealed as tensile strength improvement. From the results of this study, it was recommended that polymer-modified asphalt should be used in order to prevent low-temperature cracking in cold region.

  • PDF

Effect of Curing Temperature and Time on Measuring Fundamental Properties of Asphalt Mixture (양생온도 및 시간이 아스팔트 혼합물의 기초특성치 측정에 미치는 영향)

  • Kim, Kwang-Woo;Hong, Sang-Ki;Oh, Heung-Lak;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.13-21
    • /
    • 2002
  • This study examines the importance of conditioning temperature and period before measuring fundamental properties of asphalt mixture. Marshall specimens were made and cured in the air for one day and conditioned by submerging at $60^{\circ}C$ water for 30 min before loading. It was observed that if the specimen was cured in a lower (or higher) than normal lab temperature ($25^{\circ}C$) before submerging, the measured values were not consistent. Indirect tensile strength (ITS) was also measured on the specimens cured at different temperatures. Although there is no regulation specifying how long the specimen should be conditioned before testing, it is recommended that the conditioning time be for the specimen to be at $25^{\circ}C$. Test must be conducted for the specimen cured well before conditioning for desired test. If curing temperature was lower or higher than normal, and mixture was not properly cured, then test results would not be reliable. This study showed how long the specimen should be submerged at $60^{\circ}C$ for Marshall test and conditioned at $25^{\circ}C$ for ITS test for the specimens cured in different temperature.

  • PDF

An Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete Pavement (하이브리드 섬유로 보강된 콘크리트 포장의 역학적 특성 실험연구)

  • Park, Jong-Sup;Choi, Sung-Yong;Jung, Woo-Tai;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Cement concrete pavement offers long-term service life and excellent applicability for heavy traffic. It is easier to purchase and more durable and economical than the asphalt pavement. However, it is difficult to repair and rehabilitate compared to the asphalt pavement when it comes to the maintenance problem. Since the crack is the main reason of the damage of concrete pavement, it is necessary to control the early and long-term crack in the concrete pavement. In this experimental study, the basic performance tests have been carried out to investigate the effect of hybrid fibers which were composed of micro fibers with small diameter and high aspect ratio and macro fibers with large diameter and low aspect ratio on the concrete pavement, in which lower water ratio and larger aggregates were used compared to the general concrete mixture. The test results showed that the flexural strength and toughness of concrete pavement mixture have been increased with the use of hybrid fibers in the concrete pavement mixture, even though they were less effective compared to the normal concrete mixture. It was found that the hybrid fibers were effective to control the early shrinkage of the concrete pavement which is one of the main reasons of the damage in the concrete pavement.

A Fundamental Approach for Developing Deformation Strength Based on Rutting Characteristics of Asphalt Concrete (소성변형과의 상관성에 근거한 아스팔트 콘크리트의 변형강도 개발을 위한 기초연구)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Jun-Eun;Choi, Sun-Ju
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.23-39
    • /
    • 2002
  • This study dealt with developing a new approach for finding properties which might represent rut resistance characteristics of asphalt mixture under static loading. Two aggregates, a normal asphalt (pen 60-80) and 5 polymer-modified asphalts were used in preparation of 12 dense-graded mixtures. Marshall mix design was used in determination of OAC and each mixture at the OAC was prepared for a newly-developed Kim test on Marshall specimen (S=10cm) and gyratory specimen (S=15cm), and for wheel tracking test. Kim test used Marshall loading frame and specimens were conditioned for 30min at $60^{\circ}C$ before loading through Kim tester an apparatus consisting of a loading column and a specimen and column holder Diameter (D) of column was 3cm and 4cm with each column having different radius (r) of round cut at the bottom. The static load was applied at 50mm/min in axial direction of the specimen, not in diametral direction. The maximum load ($P_{max}$) and vertical deformation (y) at $P_{max}$ point were obtained from the test. A strength value was calculated based on the $P_{max}$ r, D and y by using the equation $K_D = 4P_{max}/{\pi}(D-2(r-\sqrt{2ry-y^2}))^2$ and is defined as the deformation strength ($kgf/cm^2$). The values of $P_{max}$/y and $K_I=K_D/y$ were also calculated. In general the leading column diameter and radius of round cut were significant factors affecting $K_D$ and $P_{max}$ values while specimen diameter was not. The statistical analyses showed the $K_D$ had the best correlation with rut depth and dynamic stability. The next best correlation was found from $P_{max}$ which was followed by $P_{max}$/y and $K_I$ in order.

  • PDF

Specimen Size Effect in Estimation of Rut Resistance based on Deformation Strength (공시체 크기가 변형강도를 이용한 소성변형 추정에 미치는 영향)

  • Lee, Moon-Sup;Choi, Sun-Ju;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.1-13
    • /
    • 2004
  • This study dealt with size effect of specimen in measuring deformation strength and estimating rut resistance of asphalt concretes under static loading using Kim test. Two aggregates, a normal asphalt (pen 60-80) and 6 polymer-modified asphalt (PMA) binders were used for preparation of 14 dense-graded mixtures. Mixtures were prepared based on optimum asphalt content by Marshall compactor (S= 10cm) and gyratory compactor (S= 15cm) for Kim test and for wheel tracking test. In statistical analysis by general linear model (GLM) procedure of SAS, the diameter of specimen was found not to be a significant factor that affect the Kim test result. Therefore, it was found that either loom-diameter or 15cm-diameter of specimen gave no significant difference in deformation strength ($K_D$) values in Kim test for any aggregate mixture. However, the thickness of specimen was found to be a significant factor in determining $K_D$. It is estimated that $K_D$ is a function of y, vertical deformation, and y has something to do with thickness of specimen. Therefore, it is suggested that the thickness of specimen should not be higher than 6.6cm, and the correction factor depending on the thickness value should be developed in the future study.

  • PDF

Application of Discoll Method to Blend Fine Aggregate for Concrete (콘크리트용 잔골재 혼합을 위한 Driscoll 방법의 적용)

  • Lee, Seong Haeng;Ham, Hyeong Gil;Kim, Tae Wan;Oh, Yong Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2011
  • Recently depletion of natural resources makes a deficiency of sand aggregation in the concrete works. In this study, the quality characteristics of concrete and aggregate according to blending fine aggregate in the river sand and the crash sand was analyzed by Normal method and Driscoll method which has used mixing of fine aggregate for asphalt mostly. Application of Discoll method to blend fine aggregate for concrete was studied in the first step to blend fine aggregates concrete. The fineness modulus, grading, slump, air content and compressive strength were tested by the two method, the results of Driscoll method was very similar to degree of err limits in comparison with those of Normal method in the same condition. As a result, Driscoll method is reasonable to use the fine aggregates mixture for concrete in river sand and crash sand.