• Title/Summary/Keyword: Normal Deformation

Search Result 560, Processing Time 0.023 seconds

A Note on the Frequency and Normal Mode Equations of Uniform Timoshenko Beams (균일단면(均一斷面) Timoshenko보의 진동수방정식(振動數方程式) 및 기준함수(基準函數)에 관하여)

  • K.C.,Kim;Y.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.2
    • /
    • pp.27-31
    • /
    • 1982
  • The practical utilization of the frequency and normal mode equations of uniform Timoshenko beams such as those presented by Huang is not simple due to their highly trancendental nature. In this note largely simplified equations obtained for the fixed-fixed and the free-free boundary conditions, the modes of which are separable into symmetric modes and antisymmetric ones, are given. Numerical results obtains for six common-type boundary conditions show that the quantitative measure of the effect of rotary inertia and shear deformation on the natural frequency is greatly dependent upon the boundary conditions as well as the order number.

  • PDF

A Study on the Drawing of Strip by Upper Bound Elemental Technique (상계요소법에 의한 판재 인발공정에 관한 연구)

  • Hur, K.D.;Choi, Y.;Choi, I.K.
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • For metal forming analysis, upper-bound solution is a practical method because the solution is overestimated. However it is not easy to determine the stresses on dies by using upper-bound solution. In this study, new scheme to calculate the stresses on dies based on upper bound solution is proposed. In the velocity fields, imaginary velocity is adapted to analyze the normal pressure on die surfaces. To verify the proposed scheme. plane strain drawing has been considered. The stresses on dies obtained by the proposed scheme are compared with the results of rigid plastic FEM and the experimental results. In the experiments, pressure film is used to measure the normal pressure on dies.

Design and Characteristics of cryogenic ball valve (초저온 볼 밸브 설계 및 특성)

  • Kim, Dong-Soo;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.666-671
    • /
    • 2007
  • To acquire the safety along with durability of mechanical machinery products, we should consider the structural mechanics such as stress, deformation and dynamic vibration characteristics and identify those important aspects in the stage of preliminary design engineering. This cryogenic ball valve is used to transfer the liquified natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kg/cm^2$. For the cryogenic ball valve, the assurance of structural integrity and operability are essential to meet not only normal, abnormal loading conditions but also functionality during a seismic event. In this thesis, analytical approach and results using finite element analysis and computational method are herein presented to evaluate the aspects of structural integrity along with operability of cryogenic ball valve. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

A Study on the Cutting characteristics of a plastic sheet including Friction (마찰을 고려한 플라스틱 시트의 절단특성에 관한 연구)

  • Han Joohyun;Kim Dohyun;Kim Chungkyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.245-248
    • /
    • 2004
  • The press cutter is productive equipment that practically manufactures materials such as fabrics, papers, films, leathers, rubbers etc. into the desired shapes using cutting method. Plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event. The cutting mechanism is complicated and involves plastic flow of plate in the vicinity of the tip, friction between wedge and plate, deformation of plate. In this paper, we studied the effect of friction between cutter and plastic sheet for producing precise and superior products. The press cutter is analyzed numerically using MARC finite element program according to the variation of friction coefficients. The FEM results showed that normal stress, equivalent cauchy stress, normal total strain, equivalent total strain are good when friction coefficient is 0.0 and shear stress, shear total strain are good when friction coefficient is 0.8.

  • PDF

Molecular Dynamics Simulation of Friction and Wear Behavior Between Carbon and Copper (탄소와 구리의 마찰 및 마모에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kang Ji-Hoon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, friction and wear behaviors between monocrystalline, defect-free copper and carbon on the atomic scale are investigated by using 2-dimensional molecular dynamics simulation. It is assumed that all interatomic forces are given by Morse potential. The deformation of carbon is assumed to be neglected and vacuum condition is also assumed. Average friction and normal forces for various surface conditions, various scratch speeds and scratch depths are obtained from simulations. Changes of wear behaviors for various scratch speeds and surface conditions are investigated by observing snapshots in scratch process. The effects of surface conditions, scratch speeds, and scratch depths on the friction force, normal force, and friction coefficient are also investigated.

THE CHARACTERISTICS OF FRETTING WEAR

  • Iwabuchi, Akira
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.1-3
    • /
    • 1996
  • The characteristics of fretting wear are reviewed. Fretting damage depends on slip amplitude and classified into three groups: (1) an annular damage according to Mindlin's analysis at microslip region, (2) strong adhesive deformation without loose wear particles at the intermediate region, and (3) formation of fine oxide particles at the gross slip region. The critical slip amplitude of fretting is the boundary between (2) and (3). The boundary slip amplitude depends on normal load. The wear rate increases and saturates with increasing slip amplitude. But it is constant by considering the critical amplitude. The role of oxide particles are discussed. Three different actions are noted: accelerating wear, preventing wear and insignificant effect. The oxide shows two opposing effect depends on normal load and slip amplitude. This is related to the removal rate from the interface (abrasive action) and compaction rate at the interface to form a protective layer. The effect of oxidation is significant to determine the wear and friction. The diffusion of oxygen is restricted at the small amplitude. As a result, crack formation at the boundary is a predominant damage, related to fretting fatigue damage.

  • PDF

Mechanical Characteristics of Eccentrically Loaded High Strength Reinforced Concrete Columns (편심하증을 받는 고강도 철근콘크리트 기둥의 역학적 특성)

  • 김인식;최봉섭;권영웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.399-404
    • /
    • 2000
  • This paper are the mechanical characteristics of eccentrically loaded normal strength and high strength reinforced concrete columns based on the test results. The columns are $120\times120$mmat the mid-section and are haunched at the ends to apply the eccentric loading and prevent premature failure. Variables are concrete strengths(361, 672, 974 kgf/$\textrm{cm}^2$), $\textrm{cm}^2$longitudinal reinforcement ratios (1.98, 3.54, 1 5.53%), spacing of lateral reinforcement (30, 60, 120mm), and eccentricities (24, 40mm). As a results, the main conclusions obtained from the comparison and analysis for the strength tendency, deformation and ductility of high strength reinforced concrete columns with variables are as follows; As the concrete compressive strength concrete and lateral reinforcement increases, the ductility index of high strength reinforced concrete columns decrease, but it increase with the increase of eccentricity and longitudinal reinforcement ratio. The confinement ratio must be greater than 20 percent in order for the level of ductility between high strength reinforced concrete columns and normal strength reinforced concrete columns to be almost equal.

  • PDF

An efficient high-order warping theory for laminated plates

  • Deng, Zhongmin;Huang, Chuanyue
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.599-611
    • /
    • 2006
  • The theory with hierarchical warping functions had been used to analyze composite thin-walled structure, laminated beam and had good results. In the present paper, a series of hierarchical warping functions are developed to analyze the cylindrical bending problems of composite lamina. These warping functions which refine through-the-thickness variation of displacements were composed of basic and corrective functions by taking into account of anisotropic, material discontinues, and transverse shear and normal strain. Then the hierarchical finite element method was used to form a numerical algorithm. The distribution of the displacements, in-plane stresses, transverse shear stresses and transverse normal stress for composite laminate were analyzed with the present model. The results show that the present model has precise mechanical response compared with the first deformation transverse theory and the corrective order affects the accuracy of result.

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.783-797
    • /
    • 2016
  • Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular hole and the loading condition are tabularized.

Multicriteria shape design of an aerosol can

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis;Olivier, Beigneux
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.165-175
    • /
    • 2015
  • One of the current challenges in the domain of the multicriteria shape optimization is to reduce the calculation time required by conventional methods. The high computational cost is due to the high number of simulation or function calls required by these methods. Recently, several studies have been led to overcome this problem by integrating a metamodel in the overall optimization loop. In this paper, we perform a coupling between the Normal Boundary Intersection - NBI - algorithm with Radial Basis Function - RBF - metamodel in order to have a simple tool with a reasonable calculation time to solve multicriteria optimization problems. First, we apply our approach to academic test cases. Then, we validate our method against an industrial case, namely, shape optimization of the bottom of an aerosol can undergoing nonlinear elasto-plastic deformation. Then, in order to select solutions among the Pareto efficient ones, we use the same surrogate approach to implement a method to compute Nash and Kalai-Smorodinsky equilibria.