• Title/Summary/Keyword: Normal/Accident scenarios

Search Result 12, Processing Time 0.017 seconds

Preliminary Radiation Exposure Dose Evaluation for Workers of the Landfill Disposal Facility Considering the Radiological Characteristics of Very Low Level Concrete and Metal Decommissioning Wastes (극저준위 콘크리트, 금속 해체방폐물의 방사선적 특성을 고려한 매립형 처분시설 방사선작업자 예비 피폭선량 평가)

  • Ho-Seog Dho;Ye-Seul Cho;Hyun-Goo Kang;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.509-518
    • /
    • 2023
  • The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.

The Development of the Program Using Virtual Reality Environment to Treat the Stress Disorder after Car Accident (가상현실을 이용한 교통사고 후유장애 치료 프로그램 개발)

  • 김형래;이상호;노주선;김현택;김지혜;고희동
    • Science of Emotion and Sensibility
    • /
    • v.4 no.2
    • /
    • pp.33-38
    • /
    • 2001
  • This analysis has been projected as a preliminary analysis to develop the therapy program for people who is suffering from stress disorder after car accident such as sense of fear or anxiety using virtual reality. The analysis verified the effect of driving scenario which is core technology of stress disorder program and of anxiety reduction training such as relaxation training through clients. The relaxation training has been tested to 8 people; 7 normal and 1 sufferer from car accident presenting them 3 different types of driving scenarios. As a result, relaxation training was effective but, it was not statistically good enough although it showed incensement of uneasiness by each different driving scenario. In spite of normal clients, it is interesting that anxiety lever after relaxation training using VR is lowered, but this result need to verify to client suffering real car accident.

  • PDF

Radiological Risk Assessment for $^{99m}Tc$ Generator using Uncertainty Analysis (불확실성 분석을 이용한 $^{99m}Tc$ 발생기 사용의 방사선위험도 평가)

  • Jang, H.K.;Kim, J.Y.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • Recently, much attentions are paid to the risk associated with increased uses of medium size radiation sources in medical and industrial fields. In this study, radiation risks to the worker and to the general public due to $^{99m}Tc$ generator were assessed for both normal and accident conditions. Based on the event tree technique, exposure scenarios for various situations were derived. Uncertainty analysis based on the Monte-Carlo technique was applied to the risk assessment for workers and members of the public in the vicinity of the work place. In addition, sensitivity analysis was performed on each of the five independent input parameters to identify importance of the parameters with respect to the resulting risk. Because the frequencies of normal tasks are fat higher than those of accidents, the total risk associated with normal tasks were higher than the accident risk. The annual dose due to normal tasks were $0.6mSv\;y^{-1}$ for workers and $0.014mSv\;y^{-1}$ for public, while in accident conditions $3.96mSv\;y^{-1}\;and\;0.0016mSv\;y^{-1}$, respectively. Uncertainty range of accident risk was higher by 10 times than that of normal risk. Sensitivity analysis revealed that source strength, working distance and working time were crucial factors affecting risk. This risk analysis methodology and its results will contribute to establishment of risk-informed regulation for medium and large radioactive sources.

Uncertainty analysis of containment dose rate for core damage assessment in nuclear power plants

  • Wu, Guohua;Tong, Jiejuan;Gao, Yan;Zhang, Liguo;Zhao, Yunfei
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.673-682
    • /
    • 2018
  • One of the most widely used methods to estimate core damage during a nuclear power plant accident is containment radiation measurement. The evolution of severe accidents is extremely complex, leading to uncertainty in the containment dose rate (CDR). Therefore, it is difficult to accurately determine core damage. This study proposes to conduct uncertainty analysis of CDR for core damage assessment. First, based on source term estimation, the Monte Carlo (MC) and point-kernel integration methods were used to estimate the probability density function of the CDR under different extents of core damage in accident scenarios with late containment failure. Second, the results were verified by comparing the results of both methods. The point-kernel integration method results were more dispersed than the MC results, and the MC method was used for both quantitative and qualitative analyses. Quantitative analysis indicated a linear relationship, rather than the expected proportional relationship, between the CDR and core damage fraction. The CDR distribution obeyed a logarithmic normal distribution in accidents with a small break in containment, but not in accidents with a large break in containment. A possible application of our analysis is a real-time core damage estimation program based on the CDR.

Loss of coolant accident analysis under restriction of reverse flow

  • Radaideh, Majdi I.;Kozlowski, Tomasz;Farawila, Yousef M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1532-1539
    • /
    • 2019
  • This paper analyzes a new method for reducing boiling water reactor fuel temperature during a Loss of Coolant Accident (LOCA). The method uses a device called Reverse Flow Restriction Device (RFRD) at the inlet of fuel bundles in the core to prevent coolant loss from the bundle inlet due to the reverse flow after a large break in the recirculation loop. The device allows for flow in the forward direction which occurs during normal operation, while after the break, the RFRD device changes its status to prevent reverse flow. In this paper, a detailed simulation of LOCA has been carried out using the U.S. NRC's TRACE code to investigate the effect of RFRD on the flow rate as well as peak clad temperature of BWR fuel bundles during three different LOCA scenarios: small break LOCA (25% LOCA), large break LOCA (100% LOCA), and double-ended guillotine break (200% LOCA). The results demonstrated that the device could substantially block flow reversal in fuel bundles during LOCA, allowing for coolant to remain in the core during the coolant blowdown phase. The device can retain additional cooling water after activating the emergency systems, which maintains the peak clad temperature at lower levels. Moreover, the RFRD achieved the reflood phase (when the saturation temperature of the clad is restored) earlier than without the RFRD.

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part I: SCIANTIX

  • Zullo, G.;Pizzocri, D.;Magni, A.;Van Uffelen, P.;Schubert, A.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2771-2782
    • /
    • 2022
  • When assessing the radiological consequences of postulated accident scenarios, it is of primary interest to determine the amount of radioactive fission gas accumulated in the fuel rod free volume. The state-of-the-art semi-empirical approach (ANS 5.4-2010) is reviewed and compared with a mechanistic approach to evaluate the release of radioactive fission gases. At the intra-granular level, the diffusion-decay equation is handled by a spectral diffusion algorithm. At the inter-granular level, a mechanistic description of the grain boundary is considered: bubble growth and coalescence are treated as interrelated phenomena, resulting in the grain-boundary venting as the onset for the release from the fuel pellets. The outcome is a kinetic description of the release of radioactive fission gases, of interest when assessing normal and off-normal conditions. We implement the model in SCIANTIX and reproduce the release of short-lived fission gases, during the CONTACT 1 experiments. The results show a satisfactory agreement with the measurement and with the state-of-the-art methodology, demonstrating the model soundness. A second work will follow, providing integral fuel rod analysis by coupling the code SCIANTIX with the thermo-mechanical code TRANSURANUS.

Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model (3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의)

  • Kim, Eunjung;Park, Changmin;Na, Mijeong;Park, Hyeon;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

POSCA: A computer code for fission product plateout and circulating coolant activities within the primary circuit of a high temperature gas-cooled reactor

  • Tak, Nam-il;Lee, Jeong-Hun;Lee, Sung Nam;Jo, Chang Keun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1974-1982
    • /
    • 2020
  • Numerical prediction of fission product plateout and circulating coolant activities under normal operating conditions is crucial in the design of a high temperature gas-cooled reactor (HTGR). The results are used for the maintenance and repair of the components as well as the safety analysis regarding early source terms under loss of coolant accident scenarios. In this work, a new computer code named POSCA (Plate-Out Surface and Circulating Activities) was developed based on a one-dimensional model to evaluate fission product plateout and circulating coolant activities within the primary circuit of a HTGR. The verification and validation of study for the POSCA code was done using available analytical results and two in-pile experiments (i.e., OGL-1 and VAMPYR-1). The results of the POSCA calculations show that POSCA is able to simulate plateout and circulating coolant activities in a HTGR with fast computation and reasonable accuracy.

An Evaluation of Critical Speed for Draft Gear using Variable Formation EMU (도시철도차량의 가변편성을 고려한 고무완충기의 임계속도 평가)

  • Cho, Jeong Gil;Kim, Y.W.;Han, J.H.;Choi, J.K.;Seo, K.S.;Koo, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.139-143
    • /
    • 2019
  • In this study, we tried to derive the most severe scenario and its critical speed by 1-D collision simulation with a variable formation vehicle in order to prepare for the change of demand in Seoul Metropolitan Subway Line 3, which is operated by fixed arrangement. After establishing various collision scenario conditions, the friction coefficient between the wheel and the rail was evaluated as 0.3, which is considered to be severe. As a result of analysis according to all scenarios, the most severe scenario conditions were confirmed by comparing rubber shock absorber performance and vehicle collision deceleration. In addition, a typical wheel-rail friction coefficient was derived through accident cases, and the analysis was performed again and compared. Finally, the criterion of the critical speed in the condition of the friction coefficient of the normal wheel - rail condition was confirmed.

Experiences of Emergency Surgical Treatment for a COVID-19 Patient with Severe Traumatic Brain Injury at a Regional Trauma Center: A Case Report

  • Yun, Jung-Ho
    • Journal of Trauma and Injury
    • /
    • v.34 no.3
    • /
    • pp.212-217
    • /
    • 2021
  • Various medical scenarios have arisen with the prolonged coronavirus disease 2019 (COVID-19) pandemic. In particular, the increasing number of asymptomatic COVID-19 patients has prompted reports of emergency surgical experiences with these patients at regional trauma centers. In this report, we describe an example. A 25-year-old male was admitted to the emergency room after a traffic accident. The patient presented with stuporous mentality, and his vital signs were in the normal range. Lacerations were observed in the left eyebrow area and preauricular area, with hemotympanum in the right ear. Brain computed tomography showed a contusional hemorrhage in the right frontal area and an epidural hematoma in the right temporal area with a compound, comminuted fracture and depressed skull bone. Surgical treatment was planned, and the patient was intubated to prepare for surgery. A blood transfusion was prepared, and a central venous catheter was secured. The initial COVID-19 test administered upon presentation to the emergency room had a positive result, and a confirmatory polymerase chain reaction (PCR) test was administered. The PCR test confirmed a positive result. Emergency surgical treatment was performed because the patient's consciousness gradually deteriorated. The risk of infection was high due to the open and unclean wounds in the skull and brain. We prepared and divided the COVID-19 surgical team, including the patient's transportation team, anesthesia team, and surgical preparation team, for successful surgery without any transmission or morbidity. The patient recovered consciousness after the operation, received close monitoring, and did not show any deterioration due to COVID-19.