• Title/Summary/Keyword: Nonvolatile memory devices

Search Result 119, Processing Time 0.026 seconds

Computer Modeling and characteristics of MFMIS devices Using Ferroelectric PZT Thin Film (강유전체 PZT박막을 이용한 MFMIS소자의 모델링 및 특성에 관한 시뮬레이션 연구)

  • 국상호;박지온;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.200-205
    • /
    • 2000
  • This paper describes the structure modeling and operation characteristics of MFMIS(metal-ferroelectric-metal-insulator-semiconductor) device using the Tsuprem4 which is a semiconductor device tool by Avanti. MFMIS device is being studied for nonvolatile memory application at various semiconductor laboratory but it is difficult to fabricate and analyze MFMIS devices using the semiconductor simulation tool: Tsuprem4, medici and etc. So the new library and new materials parameters for adjusting ferroelectric material and platinum electrodes in the tools are studied. In this paper structural model and operation characteristics of MFMIS devices are measured, which can be easily adopted to analysis of MFMIS device for nonvolatile memory device application.

  • PDF

Transparent Nano-floating Gate Memory Using Self-Assembled Bismuth Nanocrystals in $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) Pyrochlore Thin Films

  • Jeong, Hyeon-Jun;Song, Hyeon-A;Yang, Seung-Dong;Lee, Ga-Won;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • The nano-sized quantum structure has been an attractive candidate for investigations of the fundamental physical properties and potential applications of next-generation electronic devices. Metal nano-particles form deep quantum wells between control and tunnel oxides due to a difference in work functions. The charge storage capacity of nanoparticles has led to their use in the development of nano-floating gate memory (NFGM) devices. When compared with conventional floating gate memory devices, NFGM devices offer a number of advantages that have attracted a great deal of attention: a greater inherent scalability, better endurance, a faster write/erase speed, and more processes that are compatible with conventional silicon processes. To improve the performance of NFGM, metal nanocrystals such as Au, Ag, Ni Pt, and W have been proposed due to superior density, a strong coupling with the conduction channel, a wide range of work function selectivity, and a small energy perturbation. In the present study, bismuth metal nanocrystals were self-assembled within high-k $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) films grown at room temperature in Ar ambient via radio-frequency magnetron sputtering. The work function of the bismuth metal nanocrystals (4.34 eV) was important for nanocrystal-based nonvolatile memory (NVM) applications. If transparent NFGM devices can be integrated with transparent solar cells, non-volatile memory fields will open a new platform for flexible electron devices.

  • PDF

Trend of Intel Nonvolatile Memory Technology (인텔 비휘발성 메모리 기술 동향)

  • Lee, Y.S.;Woo, Y.J.;Jung, S.I.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of nonvolatile memory technology, Intel has released the Optane datacenter persistent memory module (DCPMM) that can be deployed in the dual in-line memory module. The results of research and experiments on Optane DCPMMs are significantly different from the anticipated results in previous studies through emulation. The DCPMM can be used in two different modes, namely, memory mode (similar to volatile DRAM: Dynamic Random Access Memory) and app direct mode (similar to file storage). It has buffers in 256-byte granularity; this is four times the CPU (Central Processing Unit) cache line (i.e., 64 bytes). However, these properties are not easy to use correctly, and the incorrect use of these properties may result in performance degradation. Optane has the same characteristics of DRAM and storage devices. To take advantage of the performance characteristics of this device, operating systems and applications require new approaches. However, this change in computing environments will require a significant number of researches in the future.

Hybrid Memory Adaptor for OpenStack Swift Object Storage (OpenStack Swift 객체 스토리지를 위한 하이브리드 메모리 어댑터 설계)

  • Yoon, Su-Kyung;Nah, Jeong Eun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.61-67
    • /
    • 2020
  • This paper is to propose a hybrid memory adaptor using next-generation nonvolatile memory devices such as phase-change memory to improve the performance limitations of OpenStack-based object storage systems. The proposed system aims to improve the performance of the account and container servers for object metadata management. For this, the proposed system consists of locality-based dynamic page buffer, write buffer, and nonvolatile memory modules. Experimental results show that the proposed system improves the hit rate by 5.5% compared to the conventional system.

The electrical properties and phase transition characteristics of amorphous $Ge_2Sb_2Te_5$ thin film (비정질 $Ge_2Sb_2Te_5$ 박막의 상변화에 따른 전기적 특성 연구)

  • Yang, Sung-Jun;Lee, Jae-Min;Shin, Kyung;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.210-213
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. Memory switching in chalcogenides is mostly a thermal process, which involves phase transformation from amorphous to crystalline state. The nonvolatile memory cells are composed of a simple sandwich (metal/chalcogenide/metal). It was formed that the threshold voltage depends on thickness, electrode distance, annealing time and temperature, respectively.

  • PDF

Non volatile memory TFT using mobile proton in gate dielectric by hydrogen neutral beam treatment

  • Yun, JangWon;Jang, Jin Nyoung;Hong, MunPyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.231-232
    • /
    • 2016
  • We have fabricated the nc-Si, IGZO based nonvolatile memory TFTs using mobile protons, which can be generated by simple hydrogen insertion process via H-NB treatment at room temperature. The TFT devices above exhibited reproducible hysteresis behavior, stable ON/OFF switching, and non-volatile memory characteristics. Also executed hydrogen treatment in order to figure out the difference of mobile proton generation between PECVD and our modified H-NB CVD. The room temperature proton-insertion process can reveal flexible inorganic based all-in-one display panel including driving circuit and memory circuit.

  • PDF

Switching characteristics of the Scaled MONOS Nonvolatile Memory Devices (Scaled MONOS 비휘발성 기억소자의 스위칭 특성)

  • 이상배;김선주;이성배;강창수;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.54-57
    • /
    • 1995
  • This study is to investigate the switching charac-teritics in the5V-programmable scaled MONOS nonvolatile memory devices, Modified Folwer-Nordheim tunneling mechanism become important when the electric field in the tunneling oxide is 6 MV/cm for E$\_$OT/ <6MV/cm the trap-assisted tunneling mechanism is dominant, The density of nitride bulk trap is found to be N$\_$T/=7.7${\times}$10$\^$18/ cm$\^$-3/ and the energy level of trap is determined to be ø$\_$T/=0.65 eV.

  • PDF

Resistive Switching Memory Devices Based on Layer-by-Layer Assembled-Superparamagnetic Nanocomposite Multilayers via Nucleophilic Substitution Reaction in Nonpolar Solvent

  • Kim, Yeong-Hun;Go, Yong-Min;Gu, Bon-Gi;Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.1-243.1
    • /
    • 2011
  • We demonstrate a facile and robust layer-by-layer (LbL) assembly method for the fabrication of nonvolatile resistive switching memory (NRSM) devices based on superparamagnetic nanocomposite multilayers, which allows the highly enhanced magnetic and resistive switching memory properties as well as the dense and homogeneous adsorption of nanoparticles, via nucleophilic substitution reaction (NSR) in nonpolar solvent. Superparamagnetic iron oxide nanoparticles (MP) of about size 12 nm (or 7 nm) synthesized with oleic acid (OA) in nonpolar solvent could be converted into 2-bromo-2-methylpropionic acid (BMPA)-stabilized iron oxide nanoparticles (BMPA-MP) by stabilizer exchange without change of solvent polarity. In addition, bromo groups of BMPA-MP could be connected with highly branched amine groups of poly (amidoamine) dendrimer (PAMA) in ethanol by NSR of between bromo and amine groups. Based on these results, nanocomposite multilayers using LbL assembly could be fabricated in nonpolar solvent by NSR of between BMPA-MP and PAMA without any additional phase transfer of MP for conventional LbL assembly. These resulting superparamagnetic multilayers displayed highly improved magnetic and resistive switching memory properties in comparison with those of multilayers based on water-dispersible MP. Furthermore, NRSM devices, which were fabricated by LbL assembly method under atmospheric conditions, exhibited the outstanding performances such as long-term stability, fast switching speed and high ON/OFF ratio comparable to that of conventional inorganic NRSM devices produced by vacuum deposition.

  • PDF

Design of Asynchronous Non-Volatile Memory Module Using NAND Flash Memory and PSRAM (낸드 플래시 메모리와 PSRAM을 이용한 비동기용 불휘발성 메모리 모듈 설계)

  • Kim, Tae Hyun;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.118-123
    • /
    • 2020
  • In this paper, the design method of asynchronous nonvolatile memory module that can efficiently process and store large amounts of data without loss when the power turned off is proposed and implemented. PSRAM, which takes advantage of DRAM and SRAM, was used for data processing, and NAND flash memory was used for data storage and backup. The problem of a lot of signal interference due to the characteristics of memory devices was solved through PCB design using high-density integration technology. In addition, a boost circuit using the super capacitor of 0.47F was designed to supply sufficient power to the system during the time to back up data when the power is off. As a result, an asynchronous nonvolatile memory module was designed and implemented that guarantees reliability and stability and can semi-permanently store data for about 10 years. The proposed method solved the problem of frequent data loss in industrial sites and presented the possibility of commercialization by providing convenience to users and managers.

Computer Simulation on Operating Characteristics of Nonvolatile SNOSFET Memory Devices (비휘발성 SNOSFET 기억소자의 동작특성에 관한 전산모사)

  • Kim, Joo-Yeon;Lee, Sang-Bae;Lee, Young-Hie;Seo, Kwang-Yell
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.14-17
    • /
    • 1992
  • To analyze Nonvolatile SNOSFET(polySilicon-Nitride-Oxide-Semiconductor Field Effect Transistor) memory device, two dimensional numerical computer simulation program was developed. The equation discretization was performed by the Finite difference method and the solution was derived by the Iteration method. The doping profile of n-channel device which was fabricated by 1Mbit CMOS process was observed. The electrical potential and the carrier concentration distribution to applied bias condition were observed in the inner of a device. As a result of the write and the erase to memory charge quantity, the threshold voltage shift is expected. Therefore, without device fabrication, the operating characteristics of the device was observed under various the processing and the operating condition.

  • PDF