• Title/Summary/Keyword: Nonuniform fatigue loads

Search Result 22, Processing Time 0.02 seconds

Study on Durability by Structural Analysis of Bulldozer (불도저의 구조해석에 의한 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.239-244
    • /
    • 2011
  • This study analyzes the behaviors on stress, fatigue and vibration about bulldozer in operation. Maximum equivalent stress is shown with the frequency of 100 Hz in case of the harmonic vibration analysis applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to -105MPa and the amplitude stress of 0 to $1.617{\times}105MPa$, the possibility of maximum damage becomes 3.23%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of bulldozer by investigating prevention and durability against its damage.

Study on Bike Frame due to Nonuniform Fatigue Loads (불규칙 피로 하중을 받는 자전거 프레임에 대한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.133-140
    • /
    • 2012
  • In this study, 3 kinds of models about bike frame are simulated with static structural analysis, And fatigue life, damage and durability according to fatigue load are analyzed. A bike frame model with diamond type is compared with another model on the reinforced support with its type. In case of the reinforced support type, maximum equivalent stress or total deformation is shown with 10% or 20% more than the diamond type respectively. At both types of models, the trends of fatigue life and damage at both types are same. 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable among the cases of nonuniform fatigue loads. In case of 'Sample history' with the average stress of 0 to -1MPa and the amplitude stress of 0 to 1MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. In case of the reinforced support type, fatigue life becomes shorter and damage probability becomes larger at the right side installed with support than diamond type. The structural result of this study can be effectively utilized with the design on bike frame by investigating prevention and durability against its damage.

Structural and Fatigue Analysis on Shock Absorber Mount of Automobile (자동차의 쇽업쇼바 마운트에 대한 구조 및 피로해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.125-133
    • /
    • 2012
  • This study aims at structural analysis with fatigue on the shock absorber mount of automobile. Two kinds of mount as original model 1 and reinforced model 2 are applied. Among the cases of nonuniform fatigue loads at both models, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' or 'SAE transmission', the maximum fatigue life at model 2 is 5 to 6 times as much as model 1 and the minimum damage at model 2 is decreased 5 to 6 times as much as model 1. In case of 'Sample history' as slow fatigue loading history, the minimum damage at model 2 becomes same as model 1 but the maximum fatigue life at model 2 is decreased more than 17 times as much as model 1. In case of 'Sample History' with the average stress of -$10^4MPa$ to $10^4MPa$ and the amplitude stress of 0MPa to $10^4MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Safe and durable design of shock absorber can be effectively improved by using this study result on mount frame.

Structural Durability Analysis of Tie Rod (타이로드의 구조적 내구성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.68-75
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the tie rod configuration. The maximum displacement amplitude is happened at 156Hz by harmonic vibration analysis, this tie rod model can be broken as the weakest state. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sine wave' becomes most stable. In case of 'Sine wave' with the average stress of 0MPa and the amplitude stress of 570MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 140 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on tie rod by investigating prevention and durability against its damage.

Study on Durability by Vibration and Fatigue of the Helicopter (헬기의 진동과 피로에 대한 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration on main rotor and body of helicopter. The maximum stress is shown on adjoint part between body and main rotor at the lower position of main rotor. As the maximum displacement amplitude is happened at 4000Hz, there is no resonance and the state of helicopter becomes safe at hovering without the abnormal air current and the disabled rotor. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5MPa$ and the amplitude stress of 0MPa to $8.539{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study by using the analysis of vibration and fatigue can be effectively utilized for safe and durable design of helicopter.

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Study on Structural Safety Analysis of Upper Arm (어퍼암의 구조적 안전성 해석에 대한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • This study analyzes upper arm as the part of suspension through the structural analyses of fatigue. Maximum displacement is shown at the knuckle joint connected with the bracket of automotive body. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. Maximum life at 'Sample history' or 'SAE transmission' can be shown with 60 or 3.5 times more than 'SAE bracket history' respectively. In case of 'Sample history' with the average stress of $-4{\times}10^4$ to $4{\times}10^4$ MPa and the amplitude stress 0 to $8{\times}10^4$ MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. This study result is applied with the design of upper arm and it can be useful at predicting prevention and durability against its damage.

Structural Safety Analysis on Bicycle Suspension Seat Post (자전거 서스펜션 안장봉에 대한 구조 안정성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.72-81
    • /
    • 2012
  • This study investigates structural, fatigue and modal analyses at bicycle suspension seat post. When weight is applied to the saddle, models 1 and 2 have the weakest strength at the part connected with saddle. And model 2 is greater total deformation and equivalent stress than model 1. Among the cases of nonuniform fatigue loads at models 1 and 2, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^4MPa$ and the amplitude stress of 0 to $10^4MPa$, the possibility of maximum damage becomes 4%. This stress state can be shown with 5 to 7times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Model 1 has better impulse relaxation and passenger sensitivity than model 2. The structural result of this study can be effectively utilized with the design of bicycle suspension seat post by investigating prevention and durability against its damage.

Structural Analysis on the Wheel of Railway Vehicle (철도차량의 바퀴에 대한 구조 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.451-458
    • /
    • 2012
  • This study aims at the structural analysis with fatigue according to the configuration of railway vehicle wheel. Maximum equivalent stress or deformation is shown at the lower face in contact with wheel and rail. As model B has the maximum stress or deformation which becomes lower than model A, model B is shown to have more durability than model A. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{11}$ Pa and the amplitude stress of 0 to $10^{10}$ Pa, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of railway vehicle wheel by prevention and durability against its damage.

Structural Safety Analysis of Clutch System (클러치의 구조 안전 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.148-155
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration at clutch on the rotation of wheel. Eigenfrequencies from 1'st to 6'th order about clutch assembly are shown with the vibration at more than 800Hz. Maximum equivalent stress is shown with the frequency of 800Hz in case of the harmonic vibration applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5$ MPa and the amplitude stress of 0MPa to $10^5$ MPa, the possibility of maximum damage becomes 3.23%. This stress state can be shown with 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the safe design of clutch.