• 제목/요약/키워드: Nonthermal atmospheric pressure plasma

검색결과 16건 처리시간 0.031초

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF

Plasma bioscience for medicine, agriculture and hygiene applications

  • Eun Ha Choi;Nagendra Kumar Kaushik;Young June Hong;Jun Sup Lim;Jin Sung Choi;Ihn Han
    • Journal of the Korean Physical Society
    • /
    • 제80권
    • /
    • pp.817-851
    • /
    • 2022
  • Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Analysis of Plasma Effects on Seed Germination and Plant Growth

  • Kim, Taesoo;Park, Daehun;Park, Gyungsoon;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.253.1-253.1
    • /
    • 2014
  • Plasma technology has been widely used for decontamination, differentiation, and disease treatment. Recently, studies show that plasma has effects on increasing seed germination and plant growth. In spite of increasing number of studies about plasma effects, the interaction between plasma and plants has been rarely informed. In this study, we have analyzed the effects of nonthermal atmospheric pressure plasma on seed germination and growth of coriander (Coriandum sativum), a medicinal plant. We used to Ar, air, and N2 plasma on seed as feeding gases. Plasma was discharged at 0.62 kV, 200 mA, 9.2 W. Seed germination was increased over time when treated with N2 based DBD plasma for exposure times of 30 seconds and 1 minute, everyday. After 7 days, about 80~100% of seeds were germinated in the treatment with N2 based DBD plasma, compared to control (about 40%, only gas treated seeds). In order to elucidate the mechanism of increased germination, we have analyzed characteristics of changes in plant hormones and seed surface structure by SEM.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

코로나 방전 플라즈마를 이용한 화산암재 분말 살균 (Sterilization of Scoria Powder by Corona Discharge Plasma)

  • 조진오;이호원;목영선
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.386-391
    • /
    • 2014
  • 본 연구에서는 상압 저온 코로나 방전 플라즈마를 화산암재(스코리아) 분말의 살균에 적용하였다. 스코리아 분말에 Escherichia coli (E. coli) 배양액을 살포하여 균일하게 혼합한 후, 코로나 방전 플라즈마 특성 인자인 방전전력, 방전시간, 주입기체, 전극간격 등의 조건을 변화시키며 E. coli 살균효율을 조사하였다. 실험 결과 상압 저온 코로나 방전 플라즈마는 분말상의 스코리아 살균에 아주 효과적인 것으로 나타났으며, 방전전력 15 W에서 5 min 동안 살균한 결과 E. coli가 99.9% 이상 사멸하였다. 방전전력, 방전시간, 인가전압이 증가할수록 사멸율이 향상되었다. 반응기에 주입되는 기체의 종류에 따른 살균력 실험 결과, 산소 > 모사공기(산소 20%) > 질소 순으로 나타났다. 코로나 방전 플라즈마에 의한 E. coli 살균은 자외선과 활성산화종(산소라디칼, OH라디칼, 오존 등)에 의한 세포막 침식 및 에칭, 그리고 플라즈마 방전 스트리머에 의한 대장균 세포막 파괴로 설명할 수 있다.