• Title/Summary/Keyword: Nonsteady State

Search Result 14, Processing Time 0.023 seconds

Finite Element Analysis of Axisymmetric Hot Extrusion Through Square Dies (평금형을 이용한 축대칭 열간 압출의 유한요소해석)

  • 강연식;박치용;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.207-225
    • /
    • 1992
  • The study is concerned with the thermo-viscoplastic finite element analysis of axisymmetric forward hot extrusion through square dies. The problem is treated as a nonsteady state problem because the distribution of temperature and material properties are continuously changing with the punch travel. In square die extrusion, difficulties arise from the severe distortion and die interference of elements at the aperture rim of the die even with a small punch travel. And finite element computation is impossible without intermittent remeshing. Accordingly, an automatic remeshing technique is proposed by employing specially designed mesh structure near the aperture rim. The analysis of temperature distribution includes heat conduction through material interfaces, heat convection and radiation to the atmosphere and is carried out by decoupling the heat analysis from the analysis of the deformation. The extrusion load and the distributions of strain rate and temperature are computed for the given cases rendering reasonable results. Computed grid distortions are found to be in good agreement with the experimental results. It has been thus shown that the proposed method of analysis can be effectively applied to the axisymmetric hot extrusion through square dies.

Influence of Illumination on Domain Switching and Photovoltaic Current in Poled $(Pb_{1x}La_x)TiO_3$ Freeoelectric Ceramics

  • Park, Si-Kyung;Park, Dong-Gu;Kim, Sung-Ryul
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.267-271
    • /
    • 2000
  • The influence of photoexcited nonequilibrium carriers on domain switching and photovoltaic current was investigated in two kinds of poled La-modified PbTiO$_3$ferroelectric ceramics, (Pb$_{0.85}$La$_{0.15}$)TiO$_3$and (Pb$_{0.76}$La$_{0.24}$)TiO$_3$, under illumination in the absence of external electric field. Both photovoltaic current and cumulative AE event counts increased with illumination time. The observed nonsteady-state photovoltaic current could be explained on the basis of the cycles of a series of physical events consisting the establishment of space charge field by photoexcited carriers trapped at the grain boundaries, the photoinduced domain switching, and the increase in the remanent polarization. An analysis of energy distribution of the observed AE signals also revealed that the space charge field in (Pb$_{0.85}$La$_{0.15}$)TiO$_3$allowed both 18$0^{\circ}C$ and 90$^{\circ}$domains to be switched during illumination.

  • PDF

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Prediction of the Environmental Conditions in Underground Tunnelling Spaces (地下터널 굴착作業場內 作業環境豫測)

  • Park, Hee-Bong
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.116-122
    • /
    • 1992
  • A comprehensive, nonsteady state, computer simulation program for the environmental conditions in advancing tunnels (the HEADSIM simulation program) is constructed and successfully validated with heat balance amongst all heat sources, and with mass conservation amongst various airflows including the leakage air from ducts, under timedependent variations of inlet air conditions. which include sudden, diurnal and seasonal changes. Heat conduction in the wall strata and face strata is simulated with most complicated boundary conditions using the finite difference method, and the climatic conditions in roadway sections which contain air ducts, booster fan, spray cooler, compressed air pipes, cold water pipes, return water pipes, machinery and broken rock are simulated taking into account the variations of face operation and the heat storage mechanism in the strata. The limitations of simulation time steps and roadway section lengths are defined according to the stability criteria satisfying the principles of thermodynamics. Variations of heat transfer coefficients, which are newly set, and those of wetness factors are taken into account according to the variations of other parameters and the stepwise advance of the face. Newly-derived formulae are used for computing the air duct leakage and the pressure inside of the duct. A new concept of an 'imaginary duct' is introduced to simulate the climatic conditions in tunnels during holiday periods, which directly affect conditions on subsequent working days under the consideration of natural convection. A subsidiary program (the WALLSIM simulation program) is made to compute the dimensionless tunnel surface temperatures and to compare the results with those from analytical approaches, and to demonstrate the stability, convergence and accuracy of the strata heat conduction simulation, adopting the finite difference method. The WALLSIM also has wide applications, including those for the computation of age coefficients.

  • PDF