• Title/Summary/Keyword: Nonstatioanry

Search Result 1, Processing Time 0.013 seconds

An Hourly Extreme Data Estimation Method Developed Using Nonstationary Bayesian Beta Distribution (비정상성 Bayesian Beta 분포를 이용한 시 단위 극치자료 추정기법 개발)

  • Kim, Yong-Tak;Kim, Jin-Young;Lee, Jae Chul;Kwon, Hyun-Han
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.256-272
    • /
    • 2017
  • Extreme rainfall has become more frequent over the Korean peninsula in recent years, causing serious damages. In a changing climate, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to overestimate (or underestimate) the design rainfalls. A main objective of this study is to develop a stochastic disaggregation method of seasonal rainfall to hourly extreme rainfall, and offer a way to derive the nonstationary IDF curves. In this study, we propose a novel approach based on a Four-Parameter Beta (4P-beta) distribution to estimate the nonstationary IDF curves conditioned on the observed (or simulated) seasonal rainfall, which becomes the time-varying upper bound of the 4P beta distribution. Moreover, this study employed a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters. The proposed model showed a comparable design rainfall to that of GEV distribution under the stationary assumption. As a nonstationary rainfall frequency model, the proposed model can effectively translate the seasonal variation into the sub-daily extreme rainfall.