• Title/Summary/Keyword: Nonrigid Registration

Search Result 4, Processing Time 0.017 seconds

Prostate MR and Pathology Image Fusion through Image Correction and Multi-stage Registration (영상보정 및 다단계 정합을 통한 전립선 MR 영상과 병리 영상간 융합)

  • Jung, Ju-Lip;Jo, Hyun-Hee;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.700-704
    • /
    • 2009
  • In this paper, we propose a method for combining MR image with histopathology image of the prostate using image correction and multi-stage registration. Our method consists of four steps. First, the intensity of prostate bleeding area on T2-weighted MR image is substituted for that on T1-weighted MR image. And two or four tissue sections of the prostate in histopathology image are combined to produce a single prostate image by manual stitching. Second, rigid registration is performed to find the affine transformations that to optimize mutual information between MR and histopathology images. Third, the result of affine registration is deformed by the TPS warping. Finally, aligned images are visualized by the intensity intermixing. Experimental results show that the prostate tumor lesion can be properly located and clearly visualized within MR images for tissue characterization comparison and that the registration error between T2-weighted MR and histopathology image was 0.0815mm.

Nonrigid Lung Registration between End-Exhale and End-Inhale CT Scans Using a Demon Algorithm (데몬 알고리즘을 이용한 호기-흡기 CT 영상 비강체 폐 정합)

  • Yim, Ye-Ny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • This paper proposes a deformable registration method using a demon algorithm for aligning the lungs between end-exhale and end-inhale CT scans. The lungs are globally aligned by affine transformation and locally deformed by a demon algorithm. The use of floating gradient force allows a fast convergence in the lung regions with a weak gradient of the reference image. The active-cell-based demon algorithm helps to accelerate the registration process and reduce the probability of deformation folding because it avoids unnecessary computation of the displacement for well-matched lung regions. The performance of the proposed method was evaluated through comparisons of methods that use a reference gradient force or a combined gradient force as well as methods with and without active cells. The results show that the proposed method can accurately register lungs with large deformations and can reduce the processing time considerably.

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Technical Feasibility of Quantitative Measurement of Various Degrees of Small Bowel Motility Using Cine Magnetic Resonance Imaging

  • Ji Young Choi;Jihye Yun;Subin Heo;Dong Wook Kim;Sang Hyun Choi;Jiyoung Yoon;Kyuwon Kim;Kee Wook Jung;Seung-Jae Myung
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1093-1101
    • /
    • 2023
  • Objective: Cine magnetic resonance imaging (MRI) has emerged as a noninvasive method to quantitatively assess bowel motility. However, its accuracy in measuring various degrees of small bowel motility has not been extensively evaluated. We aimed to draw a quantitative small bowel motility score from cine MRI and evaluate its performance in a population with varying degrees of small bowel motility. Materials and Methods: A total of 174 participants (28.5 ± 7.6 years; 135 males) underwent a 22-second-long cine MRI sequence (2-dimensional balanced turbo-field echo; 0.5 seconds per image) approximately 5 minutes after being intravenously administered 10 mg of scopolamine-N-butyl bromide to deliberately create diverse degrees of small bowel motility. In a manually segmented area of the small bowel, motility was automatically quantified using a nonrigid registration and calculated as a quantitative motility score. The mean value (MV) of motility grades visually assessed by two radiologists was used as a reference standard. The quantitative motility score's correlation (Spearman's ρ) with the reference standard and performance (area under the receiver operating characteristics curve [AUROC], sensitivity, and specificity) for diagnosing adynamic small bowel (MV of 1) were evaluated. Results: For the MV of the quantitative motility scores at grades 1, 1.5, 2, 2.5, and 3, the mean ± standard deviation values were 0.019 ± 0.003, 0.027 ± 0.010, 0.033 ± 0.008, 0.032 ± 0.009, and 0.043 ± 0.013, respectively. There was a significant positive correlation between the quantitative motility score and the MV (ρ = 0.531, P < 0.001). The AUROC value for diagnosing a MV of 1 (i.e., adynamic small bowel) was 0.953 (95% confidence interval, 0.923-0.984). Moreover, the optimal cutoff for the quantitative motility score was 0.024, with a sensitivity of 100% (15/15) and specificity of 89.9% (143/159). Conclusion: The quantitative motility score calculated from a cine MRI enables diagnosis of an adynamic small bowel, and potentially discerns various degrees of bowel motility.