• 제목/요약/키워드: Nonpolar

검색결과 277건 처리시간 0.028초

Demonstration of Nonpolar a-plane Light Emitting Diodes on r-plane Sapphire Substrate by MOCVD

  • Son, Ji-Su;Baik, Kwang-Hyeon;Song, Hoo-Young;Kim, Ji-Hoon;Kim, Tae-Geun;Hwang, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.147-147
    • /
    • 2011
  • High crystalline nonpolar a-plane (11-20) nitride light emitting diodes (LEDs) have been fabricated on r-plane (1-102) sapphire substrates by metalorganic chemical-vapor deposition (MOCVD). The multi-quantum wells (MQWs) active region is consists of 4 periods the nonpolar a-plane InGaN/GaN(a-InGaN/GaN) on a high quality a-plane GaN (a-GaN) template grown by using the multibuffer layer technique. The full widths at half maximum (FWHMs) of x-ray rocking curve (XRC) obtained from phiscan of the specimen that was grown up to nonpolar a-plane GaN LED layers with double crystal x-ray diffraction. The FWHM values were decreased down to 477 arc sec for $0^{\circ}$ and 505 arc sec for $-90^{\circ}$, respectively. After fabricating a conventional lateral LED chip which size was $300{\times}600{\mu}m^2$, we measured the optical output power by on-wafer measurements. N-electrode was made with Cr/Au contact, and ITO on p-GaN was formed with Ohmic contact using Ni/Au followed by inductively coupled plasma etching for mesa isolation. The optical output power of 1.08 mW was obtained at drive current of 20 mA with the peak emission wavelength of 502 nm.

  • PDF

무분극 a-plane 질화물계 발광다이오드에서 SiO2 전류 제한 층을 통한 발광 효율 증가 (Improvement of the Light Emission Efficiency on Nonpolar a-plane GaN LEDs with SiO2 Current Blocking Layer)

  • 황성주;곽준섭
    • 한국전기전자재료학회논문지
    • /
    • 제30권3호
    • /
    • pp.175-179
    • /
    • 2017
  • In this study, we investigate the $SiO_2$ current blocking layer (CBL) to improve light output power efficiency in nonpolar a-plane (11-20) GaN LEDs on a r-plane sapphire substrate. The $SiO_2$ CBL was produced under the p-pad layer using plasma enhanced chemical vapor deposition (PECVD). The results show that nonpolar GaN LED light output power with the $SiO_2$ CBL is considerably enhanced compared without the $SiO_2$ CBL. This can be attributed to reduced light absorption at the p-pad due to current blocking to the active layer by the $SiO_2$ CBL.

Self-Assembly of Helical Pores from Nonpolar Dendritic Dipeptides

  • Percec, Virgil
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.29-30
    • /
    • 2006
  • The synthesis of dendritic dipeptides $(4-3,4-3,5)12G2-CH_{2}-Boc-_{L}-Tyr-X-OMe\;where\;X\;=\;Gly,\;_{L}-Val,\;_{L}-Leu,\;_{L}-Ile,\;_{L}-Phe$, and L-Pro will be discussed. Their self-assembly in bulk and in solution and the structural and retrostructural analysis of their periodic assemblies will be compared to that of the previously reported and currently reinvestigated dendritic dipeptide with $X=_{L}-Ala$. All dendritic dipeptides containing as X nonpolar ${\alpha}-amino$ acids self-assemble into helical porous columns. The principles via which the aliphatic and aromatic substituents of X program the structure of the helical pores indicate synthetic pathways to helical pores with bioinspired functions based on artificial nonpolar ${\alpha}-amino$ acids will be discussed.

  • PDF

A Modified Adsorption Model for Retention of Nonpolar Solutes in Reversed Phase Liquid Chromatography

  • Cheong Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권1호
    • /
    • pp.15-20
    • /
    • 1994
  • The adsorption model in reversed phase liquid chromatography has been critically examined. It has been found that use of the Everett type surface activity coefficient for the solute in the stationary phase is not useful to study the retention characteristics of a nonpolar solute. We suggest a modified model. In this model it is assumed that the displaced modifier molecules from the surface monolayer do not transfer into the bulk mobile phase but stick to the nonpolar solute which has displaced them. In addition, we prefer to use an apparent stationary phase activity coefficient of the soluie instead of the Everett type activity coefficient. This modified adsorption model well explains the mobile and stationary phase effects on the solute retention upon variation of mobile phase composition.

On the Degrees of Circularity for Various Kinds of Polarized Light in the Nonpolar Fluid Composed of Chiral Molecules

  • Lee, Dong J.;김경란
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권12호
    • /
    • pp.1173-1176
    • /
    • 1995
  • The explicit results of the degrees of circularity for various kinds of completely polarized light in a nonpolar fluid composed of chiral molecules are obtained with the aid of the Ornstein-Zernike form for the correlation function of density fluctuations. Then, the results are in detail discussed in two limiting cases of critical region and compared with circular intensity differences.

Resistive Switching Memory Devices Based on Layer-by-Layer Assembled-Superparamagnetic Nanocomposite Multilayers via Nucleophilic Substitution Reaction in Nonpolar Solvent

  • 김영훈;고용민;구본기;조진한
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.243.1-243.1
    • /
    • 2011
  • We demonstrate a facile and robust layer-by-layer (LbL) assembly method for the fabrication of nonvolatile resistive switching memory (NRSM) devices based on superparamagnetic nanocomposite multilayers, which allows the highly enhanced magnetic and resistive switching memory properties as well as the dense and homogeneous adsorption of nanoparticles, via nucleophilic substitution reaction (NSR) in nonpolar solvent. Superparamagnetic iron oxide nanoparticles (MP) of about size 12 nm (or 7 nm) synthesized with oleic acid (OA) in nonpolar solvent could be converted into 2-bromo-2-methylpropionic acid (BMPA)-stabilized iron oxide nanoparticles (BMPA-MP) by stabilizer exchange without change of solvent polarity. In addition, bromo groups of BMPA-MP could be connected with highly branched amine groups of poly (amidoamine) dendrimer (PAMA) in ethanol by NSR of between bromo and amine groups. Based on these results, nanocomposite multilayers using LbL assembly could be fabricated in nonpolar solvent by NSR of between BMPA-MP and PAMA without any additional phase transfer of MP for conventional LbL assembly. These resulting superparamagnetic multilayers displayed highly improved magnetic and resistive switching memory properties in comparison with those of multilayers based on water-dispersible MP. Furthermore, NRSM devices, which were fabricated by LbL assembly method under atmospheric conditions, exhibited the outstanding performances such as long-term stability, fast switching speed and high ON/OFF ratio comparable to that of conventional inorganic NRSM devices produced by vacuum deposition.

  • PDF

Study on Efficiency Droop in a-plane InGaN/GaN Light Emitting Diodes

  • Song, Hoo-Young;Suh, Joo-Young;Kim, Eun-Kyu;Baik, Kwang-Hyeon;Hwang, Sung-Min;Yun, Joo-Sun;Shim, Jong-In
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.145-145
    • /
    • 2011
  • Light-emitting diodes (LEDs) based on III-nitrides compound semiconductors have achieved a high performance device available for display and illumination sector. However, the conventional c-plane oriented LED structures are still showing several problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. The QCSE results in spatial separation of electron and hole wavefunctions in quantum wells, thereby decreasing the internal quantum efficiency and red-shifting the emission wavelength. Due to demands for improvement of device performance, nonpolar structure has been attracting attentions, since the quantum wells grown on nonpolar templates are free from the QCSE. However, current device performance for nonpolar LEDs is still lower than those for conventional LEDs. In this study, we discuss the potential possibilities of nonpolar LEDs for commercialization. In this study, we characterized current-light output power relation of the a-plane InGaN/GaN LEDs structures with the variation of quantum well structures. On-wafer electroluminescence measurements were performed with short pulse (10 us) and low duty factor (1 %) conditions applied for eliminating thermal effects. The well and barrier widths, and indium compositions in quantum well structures were changed to analyze the efficiency droop phenomenon.

  • PDF

Schottky Metal에 따른 Nonpolar GaN Schottky Diode의 전기적 특성 연구

  • 김동호;이완호;김수진;채동주;양지원;심재인;김태근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.18-18
    • /
    • 2009
  • 최근 다양하게 연구되고 있는 무분극(nonpolar) 갈륨질화물(GaN) 소재는 자발분극(spontaneous polarization) 및 압전분극(piezoelectric polarization) 등이 발생하지 않아 높은 내부양자효율의 확보가 가능하며, 이러한 장점을 바탕으로 고효율 특성을 갖는 발광다이오드(light-emitting diode) 및 고속 전자소자 등으로의 적용을 위한 연구가 활발히 수행 중 이다. 하지만, 무분극 GaN LED의 구현 시, GaN 박막의 비등방성 성장으로 인한 박막의 막질 저하와 함께 표면에 혼재하는 Ga층과 N층에서 기인되는 절연층의 생성으로 인한 오믹전극 형성의 어려움이 대두되고 있다. 따라서, 고효율의 무분극 GaN LED 구현을 위해서는 무분극 GaN층의 질소층 제거를 위한 표면처리 공정과 더불어 금속/무분극 GaN층 간 발생되는 쇼트키 장벽층의 높이(Schottky barrier height)를 제어하는 연구가 선행되어야 한다. 본 논문에서는 무분극 GaN LED 적용을 위한 n-형 전극물질 및 오믹조건 구현을 위한 금속/무분극 GaN층간 SBH의 제어방법에 대한 연구를 수행하였다.

  • PDF

비극성용매 내의 벤젠 물질전달특성 (Mass transfer characteristics of benzene in nonpolar solution)

  • 최성우;김혜진;박문기
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.605-610
    • /
    • 2002
  • The absorption of benzene in nonpolar solution was studied in a laboratory-scale of bubble column varying of gas flow rates and gas-to-liquid ratios. A bubble column had a 0.8∼l$\times$10$\^$-3/ m$^3$ total volume (height 1500 mm, diameter 50 mm). Solution analysis was performed by GC-FID and GC-MSD. The objectives of this research were to select the best absorption fluid and to evaluate the mass transfer characteristics under specific conditions of each absorption. The results of this research were follow as: First, the heat transfer fluid is more efficient than the other nonpolar solution in removing VOC. Second, The benzene removal efficiency improved according to an increasing rate of gas flow. Also, volumetric mass transfer rate of column can be enhanced by increasing gas flow rate. Finally, the relation of gas flow rates, liquid amount, and volumetric mass transfer coefficient was obtained as follows. K$\_$y/a: 0.5906(V$\_$g//L)$\^$0.7611/ The following correlation of mass transfer coefficient and efficiency was proposed. v= 0.06078 K$\_$y/a$\^$0.2444/.