• 제목/요약/키워드: Nonpoint-source

검색결과 362건 처리시간 0.024초

실험실 조건에서 레인가든의 도시 비점오염물질 제거효과 (Effects of Rain Gardens on Removal of Urban Non-point Source Pollutants under Experimental Conditions)

  • 김창수;성기준
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.676-685
    • /
    • 2012
  • As impermeable layer continues to increase with the urbanization process, direct input of nonpoint source pollutants into water bodies via stormwater has caused serious effects on the aquatic ecosystem. Potential applications of rain gardens are increasing not only as best management practices (BMP) for reducing the level of nonpoint source pollutants but also as an ecological engineering alternative for low impact development (LID). In this study, remediation performance of various planting types, such as a mixed planting system with shrubs and herbaceous plants, was assessed quantitatively to effectively manage stormwater and increase landscape applicability. The mixed planting system with Rhododendron lateritium and Zoysia japonica showed the highest removal performance of $76.9{\pm}7.6%$ and $58.4{\pm}5.0%$ for total nitrogen and $89.9{\pm}7.9%$ and $82.4{\pm}5.2%$ for total phosphorus at rainfall intensities of 2.5 mm/h and 5.0 mm/h, respectively. The mixed planting system also showed the highest removal performance for heavy metals. The results suggest that a rain garden with the mixed planting system has high potential applicability as a natural reduction system for nonpoint source pollutants in order to manage stormwater with low concentrations of pollutants and will increase water recycling in urban areas.

논에서의 비점오염부하 예측을 위한 엑셀기반의 PADDIMOD2 개발 (Development of Excel Based PADDIMOD2 for Estimating Nonpoint Source Pollutant Loadings from Paddy Rice Fields)

  • 전지홍
    • 한국농공학회논문집
    • /
    • 제53권4호
    • /
    • pp.11-19
    • /
    • 2011
  • PADDIMOD2 was deloped to estimate nonpoint source pollution from paddy rice fields. The PADDIMOD2 was enhanced to estimate runoff and pollutant load during non-growing as well as growing season and to be easily used for public by development of Excel based system. Nutrient concentration and hydrology were based on Dirac delta function and continuous source function, and tank model for growing season and Event Mean Concentrations (EMCs) and SCS-Curve Number method for non-growing season. The PADDIMOD2 consists of three main component (input data, parameters data, and output data) by including eight Excel spread sheets. As a result of model application, total precipitation and irrigation were 1,051.7 mm and 439.2 mm, respectivley and surface runoff and water loss including infiltration and evapotranspiration were 463.0 mm and 947.9 mm, respectively. Annual nutrient loadings of T-N and T-P from study area were 6.7 kg/$km^2$/day and 0.5 kg/$km^2$/day, respectively. Development of PADDIMOD2 was focused on minimizing input data and maximizing user friendly system and is expected to be useful tool to evaluate various non-structure BMPs and estimate unit load from paddy rice fields for application at Korean TMDL.

수계의 비점오염원 관리 - 대청호를 중심으로 (Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea)

  • 이종호
    • 환경영향평가
    • /
    • 제9권3호
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

CN의 변화에 따른 안동시 물순환 선도도시 조성계획의 비점오염부하 저감효과 분석 (Analysis of Nonpoint source Reduction at Andong Area Considering Changes in CN)

  • 권헌각;정강영;김신;신석호;안정민;김경훈
    • 한국습지학회지
    • /
    • 제18권4호
    • /
    • pp.342-349
    • /
    • 2016
  • 낙동강수계에 속하는 안동시는 안동댐, 임하댐을 포함하여 낙동강이 흐르는 도시로 경상북도 신 도청 이전과, 지속적 도시화로 인해 불투수 면적이 증가하고 있어 강우 시 유출량 증가 및 비점오염원 부하가 증가되고 있는 지역이다. 본 연구에서는 물순환 선도도시에 선정된 도시 중 안동시를 대상으로 개발에 따른 유출량과 비점오염부하량을 비교 평가하였다. 안동시 물순환 선도도시 계획(안)에 대해 시 공간적 변화를 고려한 CN값을 이용한 직접 유출량과 BOD, T-N 및 T-P 비점오염부하량을 평가한 결과, 옥상녹화 및 투수포장 교체, 물순환 공원 및 거리 조성, 도심지 불투수층 개선 사업 등 4가지 scenario 모두 적용되어 개발될 경우 연간 직접유출이 10.41%, BOD 비점오염부하량이 20.56%, T-N 9.55% 및 T-P 비점오염부하량이 14.29% 저감되는 것으로 조사되었다. 4가지의 개발 scenario 중 저감률이 가장 높은 것은 도시지역 불투수면 개선 사업으로 조사되었으며 개발 이전 대비 연간 직접유출이 6.25%, BOD 비점오염부하량이 11.84%, T-N 비점오염부하량이 4.46% 및 T-P 비점오염부하량이 10.20% 저감되는 것으로 조사되었다.

CHARACTERIZATION OF NONPOINT SOURCES FROM URBAN RUNOFF

  • Park, Jae-Young;Jo, Young-Min;Oh, Jong-Min
    • Water Engineering Research
    • /
    • 제1권1호
    • /
    • pp.39-48
    • /
    • 2000
  • This work was completed in partial fulfillment of an on-going research ot descover the effective management of urban nonpoint sources. The current data was obtained from the area of Shingal, Kyunni-do. The investigation was are predominant soures of storm-runoff load and drainage. As a result of the investigation, the road was found to be most seriously contaminated and a significant potential source deteriorating the quality of streams and lakes in the vicinity of the town. Thus, in could be concluded that an effective and systematic cleaning technique must be developed as soon as possible and be frequently applied to the road.

  • PDF

대수층-하천 연결 시스템에서 분산오염원에 의한 지하수유출 수질 모델링 (Groundwater Outflow Quality Modeling for Nonpoint Source Contaminants in the Stream-Aquifer Setting)

  • 이도훈
    • 대한지하수환경학회지
    • /
    • 제2권1호
    • /
    • pp.9-13
    • /
    • 1995
  • 대수층과 하천이 상호 연결된 시스템에서 분산오염원이 대수층에 유입될 때, 이송·분산 방정식의 Monte Carlo 수치실험을 이용하여 수리전도도 및 분산오염원 농도의 공간변화가 지하수유출 농도의 시간 변화에 미치는 영향을 평가하였다. 그리고 공간 분포모형과 공간 적분모형의 비교·분석을 통하여, 모형구 조가 간단한 공간 적분모형의 분산오염원 문제에 대한 적용 가능성을 검토하였다.

  • PDF

STORM 모형을 이용한 비점오염원 부하의 규모와 특성에 관한 연구 (A Study on Scale and Characteristics of Nonpoint Pollution Using STORM Model)

  • 김도연;이홍근
    • 한국환경보건학회지
    • /
    • 제22권1호
    • /
    • pp.5-11
    • /
    • 1996
  • The more accurate estimation of the pollutant loadings from nonpoint source is needed to evaluate water quality of water resources such as river and reservoir. Therefore this study was performed to grasp the scale and characteristics of pollutant. In this study, STORM model was applied to I-cheon district to estimate runoff and pollutant loading of SS, BOD, T-N and $PO_4-P$. The results estimated by STORM model were fitted well to surveyed water quality in flow, SS and BOD. The annual loadings were estimated to be 36,463 kg/$km^3$/yr of SS, 8,090 kg/$km^3$/yr of BOD, 4,435 kg/$km^3$/yr of T-N and 358 kg/$km^3$/yr of $PO_4-P$. It was also found that the monthly pollutant loadings of SS, BOD, $PO_4-P$ were greatest in May and T-N in April.

  • PDF

낙동강 유역 내 하수처리구역의 비점 배출 부하량 분석 (Analysis on Load of Non-point Source from Sewage Treatment Districts in Nakdong River)

  • 신현석;김미은;김재문;장종경
    • 한국수자원학회논문집
    • /
    • 제48권9호
    • /
    • pp.695-709
    • /
    • 2015
  • 지속적인 개발과 도시화로 인하여 하천으로 유입되는 비점오염원의 비율 역시 점차 증가하는 추세이며 비점오염원이 수질악화에 미치는 영향은 점점 더 커지고 있다. 하천의 수질오염을 발생시키는 비점오염원 해결방안을 모색하고 있지만 도시화에 따른 수문현상변동 및 자연현상과 관련된 문제라 연구에 어려움이 많다. 본 연구에서는 기존의 총량원단위법과 달리 유역의강우 및 도시화 특성과 처리장 운영자료를 활용하여 차별화된 비점오염원 산정 방법을 제시하였다. 하수처리장의 배수구역 내 관거시스템을 합류식으로 가정하여 강우 시 하수처리장의 배수구역별 비점 발생형태는 하수처리장 강우유 입량, 하수처리장 우회유량(bypass) 및 하천토구의 CSO의 3가지로 크게 구분하여 적용함으로써 오염부하량을 산정함으로써 오염총량 단위유역 및 하수처리구역의 관리를 위한 비교자료로 활용 가능할 것으로 판단된다.

Estimation of the Pollutant Removal Efficiency in a Buffer Strip Using a SWAT Model

  • Lee, Eun-Jeong;Choi, Kyoung-Sik;Kim, Tae-Geun
    • Environmental Engineering Research
    • /
    • 제16권2호
    • /
    • pp.61-67
    • /
    • 2011
  • The water quality from nonpoint source run off results from different land use types has been studied. The construction of a buffer strip is one method of nonpoint source pollutant control. The Soil and Water Assessment Tool (SWAT) model has been applied to estimate the pollutant removal through the buffer strip. When the non-business land has been changed into grass to form a buffer-strip, the change of land use effects the results of the model according to measures of the water quality. The data from a water level station within the watershed in the years 2006 and 2007 was used for calibration and validation of the model. Under the rainfall conditions in 2007, the removal rates of SS, BOD, TN, TP were 11.5%, 9.5%, 1.2%, and 4.5%, respectively. During the rainy days, the removal rates at the buffer strip were 92.3% of SS, 91.2% of BOD, 82.4% of TN, and 83.5% of TP. The pollutants from nonpoint sources were effectively removed by over 80% as they passed through the buffer strips. Rainfall resulted in soil erosion, which led to an increase in the SS concentration, therefore, the construction of buffer strips protected the streams from SS inflows. Since TN concentrations are affected by the inflows of ground water and the N concentration of the rainfall, the removal rate of TN was relatively lower than for the other pollutants.