• Title/Summary/Keyword: Nonpoint-source

Search Result 362, Processing Time 0.029 seconds

Spatial Analysis of Nonpoint Source Pollutant Loading from the Imha dam Watershed using L-THIA (L-THIA를 이용한 낙동강수계 임하댐유역 비점오염원의 공간적 분포해석)

  • Jeon, Ji-Hong;Cha, Daniel K.;Choi, Donghyuk;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.17-29
    • /
    • 2013
  • Long-Term Hydrologic Impact Assessment (L-THIA) model which is a distributed watershed model was applied to analyze the spatial distribution of surface runoff and nonpoint source pollutant loading from Imha watershed during 2001~2010. L-THIA CN Calibration Tool linked with SCE-UA was developed to calibrate surface runoff automatically. Calibration (2001~2005) and validation (2006~2010) of monthly surface runoff were represented as 'very good' model performance showing 0.91 for calibration and 0.89 for validation as Nash-Sutcliffe (NS) values. Average annual surface runoff from Imha watershed was 218.4 mm and Banbyun subwatershed was much more than other watersheds due to poor hydrologic condition. Average annual nonpoint source pollutant loading from Imha wateshed were 2,295 ton/year for $BOD_5$, 14,752 ton/year for SS, 358 ton/year for T-N, and 79 ton/year for T-P. Amount of pollutant loading and pollutant loading rates from Banbyun watershed were much higher than other watersheds. As results of analysis of loading rate from grid size ($30m{\times}30m$), most of high 10 % of loading rate were generated from upland. Therefore, major hot spot area to manage nonpoint source pollution in Imha watershed is the combination of upland and Banbyun subwatershed. L-THIA model is easy to use and prepare input file and useful tool to manage nonpoint source pollution at screening level.

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Estimation of Nonpoint Pollutant Removal Capacity in the Buffer Strip with AnnAGNPS Model (AnnAGNPS 모형을 이용한 수변구역의 비점오염물질 제거능 산정)

  • Park, Yun Hee;Kim, Tae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.22-31
    • /
    • 2006
  • AnnAGNPS model would be applied to simulate the pollutant removal capacity with the buffer strip in the Deachung reservoir watershed. In 2002, 2,270 tons of TN and 221 tons of TP were discharged from the nonpoint source pollutants in this watershed. During the rainy season, from June to September, 66.4% of TN and 71.9% of TP resulted from nonpoint source loads. AnnAGNPS model was also used to simulate the nutrients removal capacity from the buffer strip under the condition that the present landuse would be changed to forest. As the result of simulation, the removal rates of nutrients from the buffer strip of Daecheong reservoir watershed are 406 tons of TN, 39 tons of TP, which means reduction rates are TN 17.9%, TP 17.8%, respectively.

Analysis of Changes in Residents' Perception to Establish Resident-driven Management System for Rural Nonpoint Pollution Sources - Rural field forum process - (농촌 비점오염의 주민주도 관리체계 마련을 위한 주민 의식 변화 분석 - 농촌현장포럼 프로세스를 중심으로 -)

  • Na, Kyung Soo;Kim, Jong gun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.47-56
    • /
    • 2019
  • More than half of the nonpoint sources of polluting water occur in cultivating farmlands in rural areas. Agricultural nonpoint sources are discharged from large areas of farmlands, making it difficult to collect or treat pollutants. Farmland source management is known to be the most effective, and preventive management by improving farming methods is the key to reduce nonpoint pollution. At present, more than 30% of the pollutants flowing into the rivers and lakes are nonpoint pollutants caused by agricultural activities. As a countermeasure, it is more preferable to develop and apply optimal farming management techniques for agricultural nonpoint pollution management basically than to apply existing water quality management techniques. Because of the characteristics of nonpoint source pollution, it is necessary to manage farmlands in rural areas, so the willingness and competence of the residents is most important. The purpose of this study is to analyze and understand the process of changing the cognition of residents through capacity education and survey for nonpoint pollution management in rural areas. This study conducted intensive resident competency education and examined the process of changing resident awareness through three surveys. As a result of this study, it was found that continuous education and activities for rural non-point pollution management are necessary for raising awareness of residents and managing non-point pollution effectively, showing possibility of change residents' perception.

A Study of People's Consciousness for Efficient Management of Nonpoint Pollution Source (비점오염원의 효율적 관리를 위한 국민의식연구)

  • Oh, Hyung Eun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.803-813
    • /
    • 2015
  • This study was intended to investigate recognition of the general public on water pollution and nonpoint pollution, and to promote participation of the common people in prevention and management of nonpoint pollution by investigating the necessity and participation in the education for reducing the nonpoint pollution. To this end, this study conducted questionnaire on 1,000 male and female adults over 20 years of age nationwide who are registered in Onpanel. The questionnaire was comprised of recognition on water pollution, preventive activity for nonpoint pollution, countermeasures for preventing nonpoint pollution, necessity of national education for reducing the nonpoint pollution, recognition of promotion and campaign participation, and revitalization of organization for reducing the nonpoint pollution. As a result of the questionnaire investigation, interest in water pollution of respondents was high, and specially, interest in the nonpoint pollution was higher when age, academic level, and income were higher that effectiveness of promotion and education on the source of nonpoint pollution is expected to be increased. Respondents recognized the effect of education on reducing the nonpoint pollution positively when they had higher interest, information, education and experience related to the reduction activity of nonpoint pollution. Therefore, formation of sympathy of the public is positively necessary for the nonpoint pollution management, and provision of civil activity program that increases information on the nonpoint pollution, education, and participation in reduction activity and easy promotion with high information communicability should be conducted continuously.

GIS based Non-Point Source Pollution Assessment

  • Sadeghi-Niaraki, Abolghasem;Kim, Kye-Hyun;Lee, Chol-Young
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.437-440
    • /
    • 2008
  • In recent years, pollution load calculation has become a topic for research that resulted in the development of numerous GIS modeling methods. The existing pollution method for nonpoint source (NPS) can not be indentified and calculated the amount of the pollution precisely. This research shows that the association of typical pollutant concentrations with land uses in a watershed can provide a reasonably accurate characterization of nonpoint source pollution in the watershed using Expected Mean Concentrations (EMC). The GIS based pollution assessment method is performed for three pollutant constituents: BOD, TN, and TP. First, the runoff grid by means of the precipitation grid and runoff coefficient is estimated. Then, the NPS pollution loads are calculated by grid based method. Finally, the final outputs are evaluated by statistical technique. The results illustrate the merits of the approach. This model verified that GIS based method of estimating spatially distributed NPS pollution loads can lead to more accurate representation of the real world.

  • PDF

Assessing Impact of Non-Point Source Pollution by Management Alternatives on Arable Land using AGNPS Model (AGNPS 모형을 이용한 농경지 관리대안에 따른 비점오염 저감효과 분석)

  • Lee, Eun-Jeong;Kim, Hak-Kwan;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1013
    • /
    • 2007
  • The objectives of the paper were to identify appropriate best management practices (BMPs) for reducing nonpoint source (NPS) pollutant loadings and to simulate the effects of the application of the several BMP scenarios on the study watershed using Agricultural Nonpoint Source (AGNPS) model. AGNPS model was calibrated and validated for runoff, sediment yield, and nutrient components using the observed hydrologic and water quality data. The simulated runoff, sediment, and nutrient components were well agreed with observed data. The validated AGNPS was applied to estimate the NPS pollution removal efficiency for BMP scenarios which were selected considering the pollutant characteristics of the study watershed.

  • PDF

Regional Characteristics of Nonpoint Source Pollutant Loads in the Upstream Watersheds of Nakdong River (낙동강 상류유역의 지역별 비점오염부하 특성)

  • Choe, Gyeong-Suk;Son, Seong-Ho
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.283-292
    • /
    • 2006
  • The characteristics of nonpoint source pollutant loads in upstream of Nakdong River were studied through analysis of pollutant loads of 10 sub-watersheds divided based on administrative district. The discharge and pollutant concentration of each sub-watershed were collected from Nakdong-River Water Research Institute and Daegu Regional Environmental office, respectively. Pollution items analysed in this study were BOD, T-N and T-P. The delivery loads of the nonpoint source pollutions of each sub-watershed were calculated after analysing the concentration of the pollution of each site. Several points were found from the results. Firstly, in general, city areas including Sangju, Andong showed higher degree of nonpoint pollution than country areas including Cheongsong, Yeongyang. The sub-watersheds located upstream side, such as Yeongju, Bonghwa, Necessarily show better water quality than the sub-watersheds located downstream side, such as Mungyeong, Uiseong. This result indicates that a given pollution condition within the watershed can be more sensitive than location factor to the level of water quality. Secondly, the delivery load and area of watershed were not necessarily correlated in the sense of water quality, while the discharge was shown to be highly correlated to the delively load of pollution. Lastly, sewage and waste caused from population and livestock, as well as landuse factor, were found to significantly contribute to the water pollution. Alternative solutions for controlling pollution source, therefore, should be provided to meet target levels of water quality in these regions.

  • PDF

Estimation of Nonpoint Discharge Coefficient for the Management of Total Maximum Daily Load - Rainfall Discharge Ratio on the Specific Design Flow (수질오염총량관리를 위한 비점배출계수 산정 - 특정 기준유량 시기의 강우배출비)

  • Park, Jundae;Park, Juhyun;Rhew, Doughee;Jeong, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.452-457
    • /
    • 2008
  • Nonpoint source (NPS) pollution is caused by rainfall moving over and through the ground. As the runoff moves, it picks up and carries away various pollutants from NPS. The discharge pattern of NPS pollutant loads is affected by the distribution of the rainfall during the year. This study analysed relationship between the rainfall event and the stream flow rate, and estimated the rainfall discharge ratio on the specific design flow which can be used as nonpoint discharge coefficient for the estimation of NPS pollution load. It is considered that nonpoint discharge coefficient can be effectively used for the calculation of NPS pollution load at the time of water quality modelling for the management of Total maximum daily load (TMDL).

Load factor of Nonpoint Source Pollutant owing to Land Use in Bangdong Reservoir Watershed (방동저수지 유역의 토지이용에 따른 비점오염 부하발생 원단위 산정)

  • Moon, Jong Pil;Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.61-69
    • /
    • 1999
  • The water quality of river has been deteriorated mainly by both point source pollution and nonpoint source pollution from the watershed. Techniques to cut point source pollutants down to the level required have been developed. But, techniques of best management practices to catch the nonpoint source pollutions and to control the routine of pollutants were not successively developed. The quality of closed water system such as reservoir, lake and farm pond is irresistable to being polluted mainly by nonpoint source pollutions. In this study, the population, land use, runoff coefficient, amount of rainfall, and runoff discharge in the watershed were surveyed to investigate the characteristics of water quality such as BOD, COD, SS, T-N, and T-P. After studying the changes of water quality in the viewpoint of land use such as paddy land, residential area, upland, forest and meadow, load factors of nonpoint source pollutant were calculated in Bangdong reservoir watershed. Residential area was more severe than other land use as far as BOD, COD and SS concerned. T-N and T-P released from the paddy and upland were higher than other land use. The 45.9% of total load of nonpoint source pollution was occured during the rainy season.

  • PDF