• Title/Summary/Keyword: Nonpoint-source

Search Result 362, Processing Time 0.039 seconds

Analysis of Nonpoint Sources Runoff Characteristic by Road Types (도로 유형별 비점오염원 유출특성 분석)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Chun-Sik;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1375-1384
    • /
    • 2010
  • Growth in population and urbanization has progressively increased the loading of pollutants from nonpoint sources as well as point sources. Especially in case of road regions such as city trunk road, national road and highway are rainfall and pollutants runoff intensive landuses since they are impervious and emit a lot of pollutants from vehicle activity. This research was conducted to investigate the nonpoint sources concentration and quantifying stormwater pollutants which are contained in rainfall runoff water. Three different monitoring sites in Jinju and Changwon city were equipped with an automatic rainfall gauge and flow meter for measuring rainfall and the volume of rainfall runoff. In the case of average EMC value, city trunk road was shown the highest value in target water quality items like as BOD, COD, SS, TN and TP. Or the amount of runoff loads by water quality items showed the highest value in city trunk road. And runoff load in city trunk road was 43.8 times high value compared to highway by value of city trunk road $356.7 mg/m^2$, highway $8.150 mg/m^2$, national road $19.99 mg/m^2$ in the case of BOD.

Water Quality Improvement in Estuary using Wetland and Pond (습지와 유수지를 이용한 하구담수호 수질개선)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong;Moon, Yong-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.377-380
    • /
    • 2002
  • Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. In this study, the field experiment to reduce nonpoint source pollution loadings from agricultural drainage and polluted stream waters using wetland and pond system was performed. The removal rate of $BOD_5$, TSS, TN, TP, and $Chl-{\alpha}$ was 52%, 90%, 56%, 59%, and 81%, respectively. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall the water quality improvement was apparent in wetland and pond system.

  • PDF

Water Quality Improvement of Inflow Stream in Estuary using Wetland and Pond (습지와 유수지를 이용한 하구담수호 유입하천의 수질개선)

  • Koo, Won-Suk;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.587-590
    • /
    • 2003
  • Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. In this study, the field experiment to reduce nonpoint source pollution loadings from agricultural drainage and polluted stream waters using wetland and pond system was performed. The removal rate of $BOD_5$, TSS, T-N and T-P during growing season was 7.2%, 64.3%, 57.0%, and 60.3%, respectively. And removal rate of $BOD_5$, TSS, T-N and T-P during winter was -49.5%, -56.1 %, 30.5%, and 47.1%, respectively. In this study, pond-wetland system is more effective than wetland-pond system to remove nutrient.

  • PDF

Implementations of Remote Sensing, GIS, and GPS for Water Resources and Water Quality Monitoring

  • Wu, Mu-Lin;Chen, Chiou-Hsiung;Liu, Shiu-Feng;Wey, Jiun-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1191-1193
    • /
    • 2003
  • Water quantity and quality monitoring at Taipei Watershed Management Bureau (WRATB) is not only a daily business but also a long term job. WRATB is responsible for providing high quality drinking water to about four millions population in Taipei. The quality of drinking water provided by WRATB is among one of the best in Taiwan. The total area is 717 square kilometers. The water resource pollution is usually divided into two categories, point source pollution and nonpoint source pollution. Garbage disposal is the most important component of the point source pollution, especially those by tourist during holidays and weekends. Pesticide pollution, fertilizer pollution, and natural pollution are the major contributions for nonpoint source pollution. The objective of this paper is to implement remote sensing, geographic information systems, and global positioning systems to monitor water quantity and water quality at WRATB. There are 12 water quality monitoring stations and four water gauge stations at WRATB. The coordinates of the 16 stations were determined by GPS devices and created into the base maps. MapObjects and visual BASIC were implemented to create application modules for water quality and quantity monitoring. Water quality of the two major watersheds at WRATB was put on Internet for public review monthly. The GIS software, ArcIMS, can put location maps and attributes of all 16 stations on Internet for general public review and technical implementations at WRATB. Inquiry and statistic charts automatic manipulations for the past 18 years are also available. Garbage disposal by community and tourist were also managed by GIS and GPS. The storage, collection, and transportation of garbage were reviewed by ArcMap file format. All garbage cart and garbage can at WRATB can be displayed on the base maps. Garbage disposal by tourist during holidays and weekends can be managed by a PDA with a GPS device and a digital camera. Man power allocation for tourist garbage disposal management can be done in an integration of GIS and GPS. Monitoring of water quality and quantity at WRATB can be done on Internet and by a PDA.

  • PDF

Comparative Analysis of Nitrogen Concentration of Rainfall in South Korea for Nonpoint Source Pollution Model Application (비점오염모델 적용을 위한 우리나라 행정구역별 강수 중 질소농도 비교분석)

  • Choi, Dong Ho;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung-Chang;Choi, Soon-Kun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • BACKGROUND: Water quality management of river requires quantification of pollutant loads and implementation of measures through monitoring study, but it requires labour and costs. Therefore, many researchers are performing nonpoint source pollution analysis using computer models. However, calibration of model parameters needs observed data. Nitrogen concentration in rainfall is one of the factors to be considered when estimating the pollutant loads through application of the nonpoint source pollution model, but the default value provided by the model is used when there are no observed data. Therefore, this study aims to provide the representative nitrogen concentration of the rainfall for the administrative district ensuring rational modeling and reliable results. METHODS AND RESULTS: In this study, rainfall monitoring data from June 2015 to December 2017 were used to determine the nitrogen concentration in rainfall for each administrative district. Range of the $NO_3{^-}$ and $NH_4{^+}$ concentrations were 0.41~6.05 mg/L, 0.39~2.27 mg/L, respectively, and T-N concentration was 0.80~7.71 mg/L. Furthermore, the national average of T-N concentration in this study was $2.84{\pm}1.42mg/L$, which was similar to the national average of T-N 3.03 mg/L presented by the Ministry of Environment in 2015. Therefore, the nitrogen concentrations suggested in this study can be considered to be resonable values. CONCLUSION: The nitrogen concentrations estimated in this study showed regional differences. Therefore, when estimating the pollutant loads through application of the nonpoint source pollution model, resonable parameter estimation of nitrogen concentration in rainfall is possible by reflecting the regional characteristics.

A Study of Nonpoint Source Pollutants Loads in Each Watershed of Nakdong River Basin with HSPF (HSPF 모델을 이용한 낙동강유역의 유역단위별 비점오염부하량 산정)

  • Kwon, Kwangwoo;Choi, Kyoung-sik
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.68-77
    • /
    • 2017
  • In order to estimate the non-point pollution loads from each watersheds among 209 watersheds, the calibration and validation of HSPF model were carried out based on 2012 in 2013 years. In the case of flow rate, R2 of calibration and validation were 0.71~0.93 and 0.71~0.79, which were relatively good values. With the respect to calibration of water quality, % differences between measured and simulated values were 0.4 ~ 9.7 of DO, BOD 0.5 ~ 30.2% and TN 1.9~28.6% except for Hwhangkang B site. In case of validation, DO was 0.2 ~ 13.7%, BOD 1.3~23% and TN 0.5~24.3% excluding Hwhangkang B. However, since the concentration of TP was very small compared with other items, the range of difference was large as 0.8~55.3%. level. As the result of calculating annual accumulative BOD loads for each watershed, it was found that RCH 123 (Uryeong, Gyeongsangnamdo), RCH 121 (Jinju, Gyeongsangnamdo) and RCH 92 (Daegu) were the high ranked. The unit watersheds including various landuse type susch as forest and agricultural sites in mainstream areas have a higher BOD nonpoint pollution load than those in dam regions. However, the results of the annual cumulative loading of the basins for nutrients did not appear to be consistent with the BOD annual cumulative loading ranks. Other factors that represent watershed characteristics such as landslope and soiltypes, including landuse pattern, have been found to be closely related to nonpoint pollutant loads.

Evaluation of Modeling Approach for Suspended Sediment Yield Reduction by Surface Cover Material using Rice Straw at Upland Field (모델링 기법을 이용한 밭의 볏짚 지표피복의 부유사량 저감효과 평가 방법)

  • Park, Youn Shik;Kum, Donghyuk;Lee, Dong Jun;Choi, Joongdae;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.108-114
    • /
    • 2016
  • Sediment-laden water leads to water quality degradation in streams; therefore, best management practices must be implemented in the source area to control nonpoint source pollution. Field monitoring was implemented to measure precipitation, direct runoff, and sediment concentrations at a control plot and straw-applied plot to examine the effect on sediment reduction in this study. A hydrology model, which employs Curve Number (CN) to estimate direct runoff and the Universal Soil Loss Equation to estimate soil loss, was selected. Twenty-five storm events from October 2010 to July 2012 were observed at the control plot, and 14 storm events from April 2011 to July 2011 at the straw-applied plot. CN was calibrated for direct runoff, and the Nash-Sutcliffe efficiency and coefficient of determination were 0.66 and 0.68 at the control plot. Direct runoff at the straw-applied plot was calibrated using the percentage direct runoff reduction. The estimated reduction in sediment load by direct runoff reduction calibration alone was acceptable. Therefore, direct runoff-sediment load behaviors in a hydrology model should be considered to estimate sediment load and the reduction thereof.

A Study on Selection Method of Management Watershed for Total Pollution Load Control at Tributary (지류총량관리를 위한 관리유역 선정 방법에 관한 연구)

  • Hwang, Ha Sun;Lee, Sung Jun;Ryu, Jichul;Park, Ji Hyung;Kim, Yong Seok;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.528-536
    • /
    • 2016
  • The purpose of Total Pollution Load Control at Tributary is to obtain maximum improvement effect of water quality through finding the most impaired section of water-body and establishing the proper control measure of pollutant load. This study was implemented to determine the optimal management of reach, period, condition, watershed, and pollution source and propose appropriate reduction practices using the Load duration curve (LDC) and field monitoring data. With the data of measurement, LDC analysis shows that the most impaired condition is reach V (G4~G5), E group (flow exceedance percentile 90~100%) and winter season. For this reason, winter season and low flow condition should be preferentially considered to restore water quality. The result of pollution analysis for the priority reach and period shows that agricultural nonpoint source loads from onion and garlic culture are most polluting. Therefore, it is concluded that agricultural reuse of surface effluent (storm-water runoff with non-point sources) and low impact farming that includes reducing fertilization and controlling the height of drainage outlet are efficient water quality management for this study watershed.

Calculation of Pollutant Loads and Simulation of Water Quality in Juam Lake Watershed using GIS (GIS를 이용한 주암호 유역의 오염부하량 산정 및 수질모의)

  • Kim, Chul;Kim, Souk-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.87-98
    • /
    • 2002
  • Point & nonpoint source pollutant loads were calculated in Juam lake watershed using GIS, and water quality was simulated using water quality model. Point source pollutant loads were estimated using the unit pollutant loads presented by the Ministry of Environment(MOE, 1998). Nonpoint source pollutant loads were estimated using the value of the direct runoff multiplied by expected mean concentration. The direct runoff was calculated using SCS curve number method. Water quality simulation was conducted using WASP model(2001) developed by U.S. EPA. In order to apply the model, Juam lake watershed was divided into 44 subbasins according to slope, elevation, soil type, landuse and precipitation. Then the model was applied to one subbasin. Simulation results were compared to observed values and the result should good agreement with each other.

  • PDF

Study on the Performances and Microbial Community in the Biofilm Process for Treating Nonpoint Source Pollutants (비점오염물질 처리를 위한 생물막 공정의 운전 및 미생물 군집의 특성)

  • Choi, Gi-Choong;Park, Jeung-Jin;Kang, Du-Kee;Yu, Jae-Cheul;Byun, Im-Gyu;Shin, Hyun-Suk;Lee, Tae-Ho;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1021-1027
    • /
    • 2008
  • In this study, biofilm process was introduced for treating nonpoint source pollutants. The ceramic media were provided for biofilm growth in the reactors. The packing ratio of ceramic media was 5% and 15(v/v)%, respectively. Thereafter, the reactors were operated intermittently with the different interevent periods such as 0, 5, 10 and 15 days, respectively. The removal efficiencies of COD and NH$_4{^+}$-N were investigated at the different operating conditions such as media packing ratio, temperature, and interevent period. Additionally, Polymerase chain reaction(PCR)-denaturing gel gradient electrophoresis(DGGE) and INT-dehydrogenase activity(DHA) test were conducted to observe the microbial community and activity in the biofilm. Consequently, the interevent period seemed to have no significant influence on the COD removal efficiency. COD was removed within 6$\sim$8 hours at 25$^{\circ}C$ and about 15 hours at 10$^{\circ}C$. DGGE profiles showed that the initial species of microorganisms were changed from seeded activated sludge into the microorganisms detected in sediments. INT-DHA test also showed that the activities of microorgnaisms were not decreased even in the 15 days of interevent period.