• Title/Summary/Keyword: Nonpoint pollutants

Search Result 150, Processing Time 0.023 seconds

Estimation of Livestock Pollutant Sources Reduction Effect on Water Quality in Hapcheon Dam Watershed Using HSPF Model (HSPF 모형을 이용한 축산계 비점오염 저감에 따른 합천댐 유역 수질 영향 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.98-108
    • /
    • 2020
  • The purpose of this study was to evaluate water quality in Hapcheon dam via using the Hydrological Simulation Program-Fortran (HSPF) model and applied livestock reduction scenarios. Hapcheon dam watershed input data for the HSPF model were established using the stream, land use, digital elevation map and meteorological data and others. The HSPF model was calibrated and validated using the observed water quality data from 2000 to 2016. For water quality simulation, we calculated the generated and discharge loads of the population, livestock, industry and land use following the guideline provided by the Ministry of Environment. The pollutant data were obtained from National Institute of Environmental Research (NIER). The monthly discharge load were estimated by applying the delivery rate. The calibration and validation results showed that the annual mean BOD had a difference of 0.22 mg/L and an error of ±13 %, T-N had a difference of 0.66 mg/L and an error of ±16 % and T-P had a difference of 0.027 mg/L and an error of ±13 %. In order to evaluate the nonpoint pollutants management effects, we applied livestock reduction scenarios because livestock consists of the largest portion of pollutants. As a result of the 20 % of livestock reduction, BOD, T-N and T-P decreased by 3 %, 1 % and 3 %, respectively. When 40 % of livestock reduction was applied, BOD, T-N and T-P decreased by 5 %, 3 % and 4 %, respectively. Based on the results of this study, effective pollutant management methods can be applied to improve the water quality and achieve the target water quality of Hapcheon dam watershed.

Analysis of Nonpoint Sources Runoff Characteristic for the Vineyard Areas (포도밭에 대한 비점오염원 유출특성 해석)

  • Yoon, Young-Sam;Lee, Sang-Hyeup;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.361-372
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff by rainfall type in orchard areas for two years. Effluents were monitored to calculate the EMCs and runoff loads of each pollutant. The runoff characteristics for nonpoint sources from vineyards were also inspected based on independent variables that affect runoff such as rainfall and rainfall intensity. The average runoff loads of each pollutant from vineyard_A and vineyard_B were found as follows: BOD 39.13 mg/$m^2$, COD 112.13 mg/$m^2$, TOC 54.98 mg/$m^2$, SS 1,681.8 mg/$m^2$, TN 18.29 mg/$m^2$, and TP 4.06 mg/$m^2$, which indicates that the COD's runoff load was especially high. The average EMCs from vineyard_A and vineyard_B, which represents the quality of rainfall effluent, were also analyzed: BOD 3.5 mg/L, COD 11.5 mg/L, TOC 5.2 mg/L, SS 211.7 mg/L, TN 1.774 mg/L, and TP 0.324 mg/L. This suggested that the COD, as an indicator of organic pollutants, is high in terms of EMCs as well. As rainfall increased, the EMCs of BOD, COD, TOC and SS kept turning upward. At a point, however, the high rainfall brought about dilution effects and began to push down the EMCs. Higher rainfall intensities led to the increase in the EMCs that displays the convergence of rainfall. Low rainfall intensities also raised pollutant concentrations, although the concentrations themselves were slightly different among pollutants.

Design of Riparian Areas for the Carbon Sequestration and Diffused Pollutants Control (비점오염저감 및 탄소축적을 고려한 적정 수변지역 설계방법)

  • Kim, Bo-Ra;Sung, Ki-June
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1030-1037
    • /
    • 2010
  • This study suggests the riparian area management measures that can control nonpoint source pollution and optimal carbon sequestration. 30~600 m ranges of riparian buffer width are estimated for controlling diffused pollutants in Nakbon K watershed in the Nakdong River. The area that can be easily restored to the riparian buffer zone considering current land use type is the 1,776.51 ha and it is the 50% of estimated buffer area. About 14,526 tC/yr, 11,826 tC/yr, 8,382 tC/yr and 3,349 tC/yr of carbon can be sequestered in the restoration of riparian buffer zone with broad leaved forest, mixed forest, coniferous forest and perennial grass, respectively. It is equivalent amount of carbon dioxide that emitted from 5,000 cars or 20,000 homes as a family of four.

A Study on the Correlation between River Contamination Level and Ground Pollution Source through Korean Case Study (국내 사례분석을 통한 하천오염도와 지반오염원의 상관관계에 관한 연구)

  • Choi, Joohwan;Song, Wonjun;Lee, Junhwan
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • This study measured for comparison and analysis the correlation of River pollution and Soil contamination, based on the results of previous research, and then in order to increase the efficiency of study, heavy metals which cause serious side effects was limited to the case among pollutants. This study focused on the rivers that near the Urban and industrial districts, for example, Nak-Dong river, An-Yang river, Tae-Hwa river and the rivers that near the farm land or pasture, for example, Yeong-San river, Mi-Ho river, then compare and analyze the degree of actual pollution as gathered the results of Previous research. Correlationship about pollutants of river near the Urban, industrial area and drainage basin its river has been proven, and this expected because of the strong influence by point pollution source. On the other hand, I can found the opposite relationship where the river near the farm land or pasture, and this probably because of the influence by nonpoint pollution source.

  • PDF

Characteristics of NPS Pollutants and Treatment of Stormwater Runoff in Paved Area during a Storm (강우시 포장지역의 비점오염물질 유출 및 저감특성)

  • Son, Hyun-Geun;Lee, So-Young;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • The increase of pollutant loadings from nonpoint sources affect the water quality of the major rivers in Korea. Consequently, the need for managing the nonpoint source (NPS) pollution becomes the main concern of the Korean Ministry of Environment (MOE). Recently, the policy was changed from pollutant concentration-restricting approach to the total maximum daily load (TMDL) approach to improve the water quality and protect the aquatic ecosystem. Part of the program is the construction of Best Management Practice (BMP) pilot facilities basically to control NPS. Most of the BMPs adopted were foreign technologies which could not be properly employed in the country due to some limitations such as climate, watershed characteristics, etc. In other words, to be able to apply the BMPs, research on its applicability is necessary. In this study, a three-year monitoring has been conducted to assess the treatment performance of the BMP installed in highway toll plaza and parking lot. The data gathered aid in the characterization of NPS pollutants in runoff and estimation of the pollutant removal efficiency of the BMP. The results will be used for the future implementation of BMP in different land uses as well as for the determination of optimum operation and maintenance.

  • PDF

Pollution accident analysis using a hybrid hydrologic-hydraulic model(K-River & K-DRUM) (1차원수리모형-분포형 연계모형을 이용한 수질오염사고 분석)

  • Yonghyeon Lee;Hyunuk An;Ahn Jungmina;Youngteck Hur
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.472-472
    • /
    • 2023
  • In this study, the transport of pollutants was analyzed using the K-River and K-DRUM coupling model for water pollution accidents that occurred in the Nakdong River water system. In Korea, the necessity of a distribution model that accommodates the water circulation process and the importance of nonpoint pollution sources were emphasized in water quality management after the introduction of the total amount of water pollution. Therefore, in order to reflect the runoff characteristics of nonpoint sources, the K-DRUM distribution model, which can analyze pollution in the basin, was used. And the reproducibility of the model was improved by applying the operating rules of dams operating in the Nakdong River system. In addition, in order to analyze the movement of pollutants in the river, only the advection part of the advection-dispersion equation was applied to the 1D hydraulic model K-River to perform pollutant tracking. As a result of water pollution analysis, the peak concentration of the pollutant was underestimated, but the arrival time and the trend of the overall pollutant concentration were well reproduced.

  • PDF

Runoff Characteristics and Relationship between Non-point Source Pollutants from Road (국도에서 발생하는 비점오염물질 유출특성 및 상관성)

  • Son, Hyun-Geun;Lee, So-Young;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.59-64
    • /
    • 2008
  • The urban is possessing of various landuses such as commercial, industrial, residential and official areas. All of these landuses is including the paved areas that are roads and parking lots. The NPS (nonpoint sources) pollutants are generally originated from pavement areas in urban by human activities. Especially the roads are stormwater intensive landuses because of high vehicle activities and high imperviousness. The main NPS pollutants from roads are particulates and metals from vehicles and pavements. The Korea MOE (Ministry of Environment) is developing the NPS control program to reduce the NPS pollutants from the basins. However, it is not easy to control the NPS because it has high uncertainty by characteristics of rainfalls and watersheds. Therefore, this research was conducted on characterizing the runoff and providing mean EMC from roads. The monitoring were performed for total 16 rainfall events from a road in Youngin City since 2006. The results show that the TSS is highly correlated with other pollutant parameters. The statistical regression models using TSS EMC have been developed to easily determine the EMC of other pollutant parameters.

Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands (도시지역에 적용가능한 인공습지에서의 강우유출수 함유 오염물질의 거동과 특성)

  • Alihan, Jawara Christian;Maniquiz-Redillas, Marla;Choi, Jiyeon;Flores, Precious Eureka;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Nonpoint source (NPS) pollution continues to degrade the water quality. NPS pollutants signals high concerns against a sustainable environment. Low impact development (LID) is the leading management practice which regulates and treats stormwater runoff especially in highly impervious urban areas. Constructed wetlands are known to have efficient removal capability of NPS pollutants. Likewise, these LID facilities were intended to maintain the predeveloped hydrologic regime through series of mechanisms such as particle settling, filtration, plant uptake, and etc. In this study, the objective was to investigate the characteristics, fate and treatment performance of the two in-campus constructed wetlands (SW1 and SW2) which were installed adjacent to impervious roads and parking lots to treat stormwater runoff. A total of 42 storm events were monitored starting from July 2010 until November 2015. Manual grab sampling was utilized at the inlet and outlet units of each LID facilities. Based on the results, the wetlands were found to be effective in reducing 37% and 41% of the total runoff volume and peak flows, respectively. Aside from this, outflow EMCs were generally lower than the inflow EMCs in most events suggesting that the two wetlands improved the water quality of stormwater runoff. The average removal efficiency of pollutants in facilities were 63~79% in TSS, 38~54% in TN, 54% in TP and 32%~81% in metals. The results of this study recommend the use of constructed wetlands as efficient treatment facility for urban areas for its satisfactory performance in runoff and pollutant reduction.

Analysis of Nonpoint Source Pollutants in Urban Stormwater Runoff (강우시 도시지역 비점오염물질의 하천 유입 산정)

  • Son, Younggyu
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.94-99
    • /
    • 2016
  • Non-point source control has been issued and intensively studied for the control of water quality in streams and rivers. In this study, non-point source pollutants monitoring was conducted at the end of five small streams which were connected to a main stream in three stages including Phase I (one hr before the rainfall), Phase II (one hr after the rainfall), and Phase III (six hrs after the rainfall). For all five small streams, the concentrations and loading rates of non-point source pollutants significantly increased due to the rainfall. As a result of this, priority control streams and priority pollutants were suggested to prepare for future plans of the non-point source control.

CALIBRATION AND VALIDATION OF THE HSPF MODEL ON AN URBANIZING WATERSHED IN VIRGINIA, USA

  • Im, Sang-Jun;Brannan, Kevin-M.;Mostaghimi, Saied
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.141-154
    • /
    • 2003
  • Nonpoint source pollutants from agriculture are identified as one of the main causes of water quality degradation in the United States. The Hydrological Simulation Program-Fortran (HSPF) was used to simulate runoff, nitrogen, and sediment loads from an urbanizing watershed; the Polecat Creek watershed located in Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed hydrologic and water quality data collected at the watershed outlet and at several sub-watershed outlets. A comparison of measured and simulated monthly runoff at the outlet of the watershed resulted in a correlation coefficient of 0.94 for the calibration period and 0.74 for the validation period. The annual observed and simulated sediment loads for the calibration period were 220.9 kg/ha and 201.5 kg/ha, respectively. The differences for annual nitrate nitrogen ($NO_3$) loads between the observed and simulated values at the outlet of the watershed were 5.1% and 42.1% for the calibration and validation periods, respectively. The corresponding values for total Kjeldahl nitrogen (TKN) were 60.9% and 40.7%, respectively. Based on the simulation results, the calibrated HSPF input parameters were considered to adequately represent the Polecat Creek watershed.

  • PDF