• 제목/요약/키워드: Nonlinearity coefficient

검색결과 89건 처리시간 0.023초

부분 유공 케이슨 방파제로부터의 파의 반사 (Wave Reflection from Partialy Perforated Caisson Breakwater)

  • Suh, Kyung-Doug
    • 한국해안해양공학회지
    • /
    • 제8권3호
    • /
    • pp.221-230
    • /
    • 1996
  • 기존의 전유공 케이슨 방파제로부터의 파 반사를 계산하기 위하여 개발된 Suh and Park의 이론 모형을, 케이슨 전면 하부의 연직벽을 경사가 매우 급한 경사벽으로 가정함으로써, 부분 유공 케이슨 방파제에 적용하였다. 또한, 이 모형에서, Kano and Liu가 제안한 차단계수를 이용하여 유공벽에서의 관성저항항을 수정하였다. 이 모형을 1993년도에 보고된 Park et al.의 수리실험 자료와 비교해 본 결과, 실험 자료 및 이론 모형 결과에서 모두 관성저항의 영향이 중요하여 B/L$_{c}$가 약 0.2일 때 반사율이 최소가 됨을 보이는데 (여기서 B=유수실의 폭, L$_{c}$=유수설 내에서의 파장), 이 값은 찬성저항의 영향을 무시했을 때 얻어지는 값 0.25보다 약간 작은 값이다. 또한 선형파 이론에 근거한 이 모형은 파의 비선형성이 증가함에 따라 반사율을 크게 계산하는 경향이 있음을 보이며, 따라서 이 모형은 파형경사가 작은 통상파에 적용하는 것이 바람직함을 알 수 있었다.있었다.

  • PDF

멀티 텐던 앵커헤드의 변형을 이용한 텐던의 초기 긴장력 추정 (Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head)

  • 박장호;조정래;박재균
    • 한국전산구조공학회논문집
    • /
    • 제27권6호
    • /
    • pp.581-588
    • /
    • 2014
  • 최근에 널리 사용되고 있는 PSC 교량은 콘크리트의 처짐과 균열 등의 취약점을 긴장재와 강봉을 사용하여 보완하고 성능을 향상시킨 구조물이다. 따라서 PSC 교량에서 긴장재에 작용하는 하중을 적절하게 산정하는 것은 구조물의 안전하고 효율적인 유지, 보수를 위하여 중요하다. 이 논문은 텐던에 작용하는 하중과 앵커헤드 변형과의 관계를 확인하기 위하여 멀티 텐던 앵커헤드의 변형률에 대한 수치해석을 수행하고 분석한 것이다. 정확한 해석을 위하여 재료의 물성, 접촉 문제의 비선형성 등을 모두 고려하였으며 해석은 범용 유한요소 프로그램인 Abaqus를 사용하여 수행되었다. 수치해석 결과로부터 텐던에 작용하는 하중을 추정하는 데에는 hoop 방향 변형률이 가장 유용하며, 마찰 계수, 경계조건, 그리고 배치 등에 따라 영향을 받는 것을 확인하였다.

전원용 SPD의 건전성 평가 장치 개발 (Development of Integrity Evaluation Instrument for the Power Line Surge Protective Device)

  • 장석훈;김영진;김성주;김재형
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.39-45
    • /
    • 2015
  • This paper deals with development of integrity evaluation instrument for the power line surge protective device. A reliable power supply is an essential element in the developed information and communication society by highly advances in IT technology. However, the lightning incidence also increased with the recent extreme weather events. In Korea, in order to protect the electrical system from lightning surge, SPD(Surge Protective Device) has been used for these past 30 years. However, the method of diagnosing the safety of the SPD in the industry is insufficient. In this paper, SPD integrity evaluation system was composed of a variable DC power source unit, voltage-current sensor and the embedded controller. In order to measure V-I characteristics of MOV, 3 type samples were degraded by impulse current generator. After impulse tests, the varistor voltage of all samples and nonlinearity coefficient were decreased. It confirmed the utility of the developed equipment by this experimental test and the reliability of SPD is expected for surge accident prevention when applied to industrial plant.

빗살전극형 정전용량형 습도센서와 그 신호처리회로의 설계 제작 (The Design and fabrication of Capacitive Humidity Sensor Having Interdigital Electrodes and Its Signal Processing Circuit)

  • 강정호;이재용;김우현
    • 전기학회논문지P
    • /
    • 제55권1호
    • /
    • pp.26-30
    • /
    • 2006
  • For the purpose of developing capacitive humidity sensor having interdigital electrodes, interdigital electrode was modeled and simulated to obtain capacitance and sensitivity as a function of geometric parameters like the structural gap and thickness. For the development of ASIC, switched capacitor signal processing circuits for capacitive humidity sensor were designed and simulated by Cadence using $0.25{\mu}m$ CMOS process parameters. The signal processing circuits are composed of amplifier for voltage gain control, and clock generator for sensor driving and switch control. The characteristics of the fabricated sensors are; 1) sensitivity is 9fF/%R.H., 2) temperature coefficient of offset(TCO) is $0.4%R.H./^{\circ}C$, 3) nonlinearity is 1.2%FS, 4) hysteresis is 1.5%FS in humidity range of $3%R.H.{\sim}98%R.H.$. The response time is 50 seconds in adsorption and 70 seconds in desorption. Fabricated process used in this capacitive humidity sensor having interdigital electrode are just as similar as conventional IC process technology. Therefore this can be easily mass produced with low cost, simple circuit and utilized in many applications for both industrial and environmental measurement and control system, such as monitoring system of environment, automobile, displayer, IC process room, and laboratory etc.

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

ZPCD계 바리스터 세라믹스의 전기적 특성에 Pr6O11/CoO 비의 영향 (Effect of Pr6O11/CoO Ratio on Electrical Characteristics of ZPCD-Based varistor Ceramics)

  • 남춘구;김향숙
    • 한국전기전자재료학회논문지
    • /
    • 제15권10호
    • /
    • pp.876-882
    • /
    • 2002
  • The microstructure and electrical characteristics of ZPCD (ZnO-$Pr_{6}O_{11}$-CoO-$Dy_2O_3$) -based varistor ceramics were investigated with various $Pr_{6}O_{11}$/CoO ratios and sintering temperatures. The density of varistor ceramics with $Pr_{6}O_{11}$=1.0 was almost constant with sintering temperature, whereas it was increased noticeably in $Pr_{6}O_{11}$=0.5. Increasing $Pr_{6}O_{11}$ content enhanced the densification for any CoO content and the density was greatly affected not by CoO content but by $Pr_{6}O_{11}$ content. The varistor ceramics with $Pr_{6}O_{11}$/CoO=0.5/l.0 exhibited a higher nonlinearity than any other composition ratios. In particular, the varistor ceramics sintered at $1350^{\circ}C$ exhibited the best electrical properties, with nonlinear exponent of 37.8, leakage current of 7.6 ${\mu}$A, and tan $\delta$ of 0.059.

Langmuir 미끄럼 모형을 사용한 미소채널 유동의 수치해석 (Numerical Analysis of Microchannel Flows Using Langmuir Slip Model)

  • 맹주성;최형일;이동형
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.587-593
    • /
    • 2002
  • The present research proposes a pressure based approach along with Langmuir slip condition for predicting microscale fluid flows. Using this method, gaseous slip flows in 2 -dimensional microchannels are numerically investigated. Compared to the DSMC simulation, statistical errors could be avoided and computing time is much less than that of the aforementioned molecular approach. Maxwell slip boundary condition is also studied in this research. These two slip conditions give similar results except for the pressure nonlinearity at high Knudsen number regime. However, Langmuir slip condition seems to be more promising because this does not need to calculate the streamwise velocity gradient accurately and to calibrate the empirical accommodation coefficient. The simulation results show that the proposed method using Langmuir slip condition is an effective tool for predicting compressibility and rarefaction in microscale slip flows.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

분산 보상 광섬유의 성능 지수에 따른 40 Gbps 광 펄스의 보상 특성 (Compensation Characteristics of 40 Gbps Optical Pulses Depending on Figure of Merit of Dispersion Compensating Fiber)

  • 이성렬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.729-731
    • /
    • 2013
  • 축적된 분산(dispersion)과 비선형 효과에 의한 광 신호의 왜곡을 보상하기 위해 사용되는 분산 계수가 -125 ps/nm/km인 분산 보상 광섬유의 성능 지수 (figure of merit)에 따른 40 Gbps의 광 펄스의 보상 특성을 살펴보았다. 보상 특성이 광전송 링크를 구성하는 중계 구간 (fiber span)의 수가 많고 광 펄스의 입사 전력이 클수록 DCF의 성능 지수의 영향을 많이 받는 것을 확인할 수 있었다. 또한 광 펄스의 파장이 광섬유의 영 분산 파장으로부터 많이 벗어날수록 DCF의 성능 지수의 영향을 많이 받는 것을 확인하였다. 그러나 광전송 링크의 비선형 효과가 클수록 효과적인 보상을 위한 DCF의 성능 지수는 낮아져야 한다는 것을 동시에 확인하였다.

  • PDF