• 제목/요약/키워드: Nonlinear viscoelastic material

검색결과 69건 처리시간 0.03초

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

자동차 부싱에 대한 Pipkin-Rogers 모델의 실험적 연구 (An Experimental Study of Pipkin-Rogers Model for Automotive Bushing)

  • 김성진;이수용;이성범
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.118-124
    • /
    • 2005
  • An automotive bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. In this paper, an automotive bushing is regarded as nonlinear viscoelastic incompressible material. Instron 8801 equipment was used for experimental res earch and ramp-to-constant displacement control test was used for data acquisition. Displacement dependent force relaxation function was obtained from the force extrapolation method and expressed as the explicit combination of time and displacement. Pipkin-Rogers model, which is the direct relation of force and displacement, was obtained and comparison studies between the experimental results and the Pipkin-Rogers results were carried out.

안티푸라민-에스® 로션의 레올로지 특성 연구 (Rheological Properties of Antiphlamine-S® Lotion)

  • 국화윤;송기원
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권3호
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

일래스토메릭 부싱의 축방항모드에 대한 리아니스 모델연구 (A Study of Lianis Model for Elastomeric Bushing in Axial Mode)

  • 이성범
    • Elastomers and Composites
    • /
    • 제37권3호
    • /
    • pp.151-158
    • /
    • 2002
  • 본 연구에서 고려된 elastomeric bushing은 자동차 현가장치에 사용되는 기계요소로서, 바깥쪽의 실린더형 슬리브와 안쪽의 실린더형 축 사이에서 가운데가 완전히 비어있는 실린더의 형태를 가진다. 본 연구에서는 일래스토메릭 부싱에 적용되는 힘과 변형의 관계가 비선형이고 점탄성의 특성을 보이므로, Lianis에 의해 발전되어진 비선형 점탄성 비압축 재료에 대한 구조방정식을 사용하여, 부싱의 축방향 응답에 대한 힘과 변위의 관계를 얻었다. 또한 변위에 의존하는 force relaxation function은 extrapolation method에 의한 ramp displacement control test로부터 완성되고, 이는 step displacement control test로부터 얻게된 결과와 비교하며, 두 결과가 매우 잘 일치됨을 확인하였다.

일래스토메릭 부싱의 회전방향 모두 비선형 점탄성 모델연구 (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Torsional Mode)

  • 이성범
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.194-200
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. For axial motion case, the relation between the force applied to the shaft and their relative displacement was considered. In this paper, the relation between the moment applied to the shaft and their relative deformation(angle of rotation) is considered for the torsional motion case. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the moment relaxation function of the bushing. Solutions also allow for comparison between the exact moment-deformation behavior and that predicted the proposed model. It is shown that the predictions of the proposed moment-deformation relation are in very good agreement with the exact results.

  • PDF

The Rheological and Mechanical Model for Relaxation Spectra of Polydisperse Polymers

  • Kim, Nam Jeong;Kim, Eung Ryul;Hahn Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권4호
    • /
    • pp.413-419
    • /
    • 1992
  • The theoretical equation for the relaxation spectrum of nonlinear viscoelastic polymeric material was derived from the Ree-Eyring and Maxwell non-Newtonian model. This model consists of infinite number of hyperbolic sine law Maxwell elements coupled in parallel plus a spring without a dashpot. Infinite number of nonlinear viscoelastic Maxwell elements can be used by specifying distribution of relaxation times, hole volumes, molecular weights, crystallite size and conformational size, etc. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The relaxation spectra of nylon 6 filament fibers in various electrolytic solutions were obtained by applying the experimental stress relaxation curves to the theoretical equation of relaxation spectrum. The determination of relaxation spectra was performed from computer calculation.

폴리우레탄 폼의 비선형 진동특성 해석 (Nonliear vibration analysis of polyurethane foam)

  • 강주석
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3435-3441
    • /
    • 2014
  • 차량의 시트 재질로 사용되는 폴리우레탄 폼의 모델링 및 동특성 예측은 승객의 승차감 향상을 위해 매우 중요하다. 본 연구에서는 폴리우레탄 폼의 정특성 시험을 통해 비선형 강성과 점탄성 특성의 시간변수 파라미터를 구하였다. 다항식과 컨벌루션 적분법을 이용하여 폴리우레탄 폼의 비선형 특성과 점탄성 특성을 수학적으로 모델링하였다. 이와 같은 비선형 진동 모델에 대하여 수치적분 방법을 이용하여 시트 바닥 변위에 대한 진동 응답을 계산하였다. 폴리우레탄 폼의 비선형 특성과 점탄성 특성이 진동계에서 미치는 영향을 단순 1자유도계와 인체모델을 이용하여 분석하였다. 결과적으로 폴리우레탄 폼의 점탄성 특성이 승차감을 위한 설계파라미터로 고려되어야 하는 것으로 나타났다.

Three-dimensional analysis of flexible pavement in Nepal under moving vehicular load

  • Ban, Bijay;Shrestha, Jagat K.;Pradhananga, Rojee;Shrestha, Kshitij C.
    • Advances in Computational Design
    • /
    • 제7권4호
    • /
    • pp.371-393
    • /
    • 2022
  • This paper presents a three-dimensional flexible pavement simulated in ANSYS subjected to moving vehicular load on the surface of the pavement typical for the road section in Nepal. The adopted finite element (FE) model of pavement is validated with the classical theoretical formulations for half-space pavement. The validated model is further utilized to understand the damping and dynamic response of the pavement. Transient analysis of the developed FE model is done to understand the time varying response of the pavement under a moving vehicle. The material properties of pavement considered in the analysis is taken from typical road section used in Nepal. The response quantities of pavement with nonlinear viscoelastic asphalt layer are found significantly higher compared to the elastic pavement counterpart. The structural responses of the pavement decrease with increase in the vehicle speed due to less contact time between the tires of the vehicle and the road pavement.

VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

  • CHOUGUI, NADHIR;DRABLA, SALAH;HEMICI, NACERDINNE
    • 대한수학회지
    • /
    • 제53권1호
    • /
    • pp.161-185
    • /
    • 2016
  • We consider a mathematical model which describes the quasistatic frictional contact between a piezoelectric body and an electrically conductive obstacle, the so-called foundation. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with Signorini's conditions and a version of Coulomb's law of dry friction in which the adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation for the model, in the form of a system for the displacements, the electric potential and the adhesion. Under a smallness assumption which involves only the electrical data of the problem, we prove the existence of a unique weak solution of the model. The proof is based on arguments of time-dependent quasi-variational inequalities, differential equations and Banach's fixed point theorem.

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.