• 제목/요약/키워드: Nonlinear uplift pressure

검색결과 5건 처리시간 0.016초

혼성방파제의 케이슨에 작용하는 비선형양압력분포에 관한 연구 (Nonlinear Uplift Wave Pressure Distribution Acting on the Caisson of Composite Breakwater)

  • 김도삼;배기성
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.20-27
    • /
    • 2001
  • Recently numerical approaches for wave loads acting on the vertical caisson of breakwater, and resulting wave reflection and transmission coefficients have been performed. Although the numerical studies by Sulisz's(1997) and Kim et al.(2000) are suggested representatively, theoretical formulation for nonlinear wave pressure is not developed yet. And experimental results of Sulisz(1997) revealed that nonlinear uplift pressure on the caisson may be produced largely on the case of caisson founded on the high rubble mound. From the results of this study, the nonlinear theory for the uplift wave pressure acting on the caisson by applying boundary integral method of Green theorem is formulated, and also the characteristics of nonlinear uplift pressure and run-up height on the caisson are evaluated numerically, according to the variations of hydraulic properties of the rubble mound.

  • PDF

프리스트레스 콘크리트 원전 격납건물의 비선형 유한요소해석에 관한 연구 (A Study on the Nonlinear Finite Element Analysis of Prestressed Concrete Containment Vessel)

  • 이홍표;전영선;송영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.639-646
    • /
    • 2006
  • A nonlinear finite element analysis is carried out to predict the ultimate internal pressure and failure mechanism of a 1/4 scale prestressed concrete containment vessel(PCCV) model using the commercial code ABAQUS. Therefore, this paper is mainly focused to compare the influence of concrete material model, tension stiffening parameter, uplift phenomenon and basemat. From the analysis results, nonlinear behavior of the PCCV showed a substantially different aspects in accordance with the nonlinear material model for the concrete as well as tension stiffening parameter. The boundary conditions beneath the basemat are considered to be a fixed condition and a nonlinear spring element to compare the influence of the uplift. The finite element analysis is considered with and without a basemat to find out the influence of the basemant itself. From the analysis results, the nonlinear behavior of the PCCV is entirely similar for the two cases.

  • PDF

기초의 부분적 들림이 지반-구조물상호작용 시스템의 지진응답에 미치는 영향 (Basemat Uplifting Effects on Seismic Response of Soil-Structure Interaction System)

  • 조양희;장승필
    • 대한토목학회논문집
    • /
    • 제10권1호
    • /
    • pp.37-45
    • /
    • 1990
  • 본 연구에서는 지반-구조물 상호작용 시스템에 대하여 기초의 부분적 들림을 고려할 수 있는 새로운 해석적 방법을 제시하였다. 제시된 방법은 시스템의 3 차원 거동, 수직입력의 영향, 지반반력의 비선형분포 등도 함께 고려할 수 있도록 하였다. 기초가 들릴때 지반강도 및 감쇠값의 비선형성을 나타내기 위해서는 기초의 접지면적 감소뿐만 아니라 기초회전에 따른 건물의 강체운동효과와 지반반력작용의 이동 등의 영향도 동시에 고려하였다. 다양한 예제해석을 통하여 내진해석시 기초의 부분적 들림을 고려하게 되면 기초부에서의 변위는 크게 증가하는 반면 구조물 상부에서의 탄성변위 응답치 및 가속도 응답치는 감소한다는 사실을 확인하였으며, 수직입력, 비선형 지반반력분포 3차원 거동 등은 그 영향을 무시하게 되면 불안전측의 지진응답치를 주므로 해석시 필히 고려되어야 한다는 사실을 밝혔다.

  • PDF

Three-dimensional numerical analysis of nonlinear phenomena of the tensile resistance of suction caissons

  • Azam, Arefi;Pooria, Ahad;Mehdi, Bayat;Mohammad, Silani
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.255-270
    • /
    • 2023
  • One of the main parameters that affect the design of suction caisson-supported offshore structures is uplift behavior. Pull-out of suction caissons is profoundly utilized as the offshore wind turbine foundations accompany by a tensile resistance that is a function of a complex interaction between the caisson dimensions, geometry, wall roughness, soil type, load history, pull-out rate, and many other parameters. In this paper, a parametric study using a 3-D finite element model (FEM) of a single offshore suction caisson (SOSC) surrounded by saturated soil is performed to examine the effect of some key factors on the tensile resistance of the suction bucket foundation. Among the aforementioned parameters, caisson geometry and uplift loading as well as the difference between the tensile resistance and suction pressure on the behavior of the soil-foundation system including tensile capacity are investigated. For this purpose, a full model including 3-D suction caisson, soil, and soil-structure interaction (SSI) is developed in Abaqus based on the u-p formulation accounting for soil displacement (u) and pore pressure, P.The dynamic responses of foundations are compared and validated with the known results from the literature. The paper has focused on the effect of geometry change of 3-D SOSC to present the soil-structure interaction and the tensile capacity. Different 3-D caisson models such as triangular, pentagonal, hexagonal, and octagonal are employed. It is observed that regardless of the caisson geometry, by increasing the uplift loading rate, the tensile resistance increases. More specifically, it is found that the resistance to pull-out of the cylinder is higher than the other geometries and this geometry is the optimum one for designing caissons.

Experimental study and FE analysis of tile roofs under simulated strong wind impact

  • Huang, Peng;Lin, Huatan;Hu, Feng;Gu, Ming
    • Wind and Structures
    • /
    • 제26권2호
    • /
    • pp.75-87
    • /
    • 2018
  • A large number of low-rise buildings experienced serious roof covering failures under strong wind while few suffered structural damage. Clay and concrete tiles are two main kinds of roof covering. For the tile roof system, few researches were carried out based on Finite Element (FE) analysis due to the difficulty in the simulation of the interface between the tiles and the roof sheathing (the bonding materials, foam or mortar). In this paper, the FE analysis of a single clay or concrete tile with foam-set or mortar-set were built with the interface simulated by the equivalent nonlinear springs based on the mechanical uplift and displacement tests, and they were expanded into the whole roof. A detailed wind tunnel test was carried out at Tongji University to acquire the wind loads on these two kinds of roof tiles, and then the test data were fed into the FE analysis. For the purpose of validation and calibration, the results of FE analysis were compared with the full-scale performance ofthe tile roofs under simulated strong wind impact through one-of-a-kind Wall of Wind (WoW) apparatus at Florida International University. The results are consistent with the WoW test that the roof of concrete tiles with mortar-set provided the highest resistance, and the material defects or improper construction practices are the key factors to induce the roof tiles' failure. Meanwhile, the staggered setting of concrete tiles would help develop an interlocking mechanism between the tiles and increase their resistance.