• Title/Summary/Keyword: Nonlinear optical materials

Search Result 90, Processing Time 0.037 seconds

Synthesis and Characterization of a New Photoconducting Poly(siloxane) Having Pendant Diphenylhydrazone for Photorefractive Applications

  • Lee, Sang-Ho;Jahng, Woong-Sang;Park, Ki-Hong;Kim, Nakjoong;Joo, Won-Jae;Park, Dong-Hoon
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.431-436
    • /
    • 2003
  • A new photoconducting polymer, diphenyl hydrazone-substituted polysiloxane, was successfully synthesized by the hydrosilylation method and characterized by FT-IR, $^1$H-NMR, and $^{29}$ Si-NMR spectroscopy. The glass transition temperature (T$_{g}$) of the polysiloxane having pendant diphenyl hydrazone was ca. 62 $^{\circ}C$, which enabled a component of a low-T$_{g}$ photorefractive material to be prepared without the addition of any plasticizers. This polysiloxane, with 1 wt% of $C_{60}$ dopant, showed a high photoconductivity (2.8 ${\times}$ 10$^{-12}$ S/cm at 70 V/${\mu}{\textrm}{m}$) at 633 nm, which is necessary for fast build-up of the space-charge field. A photorefractive composite was prepared by adding a nonlinear optical chromophore, 2-{3-[2-(dibutylamino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenylidene} malononitrile, into the photoconducting polysiloxane together with $C_{60}$ . This composite shows a large orientation birefringence ($\Delta$n = 2.6 ${\times}$ 10$^{-3}$ at 50 V/${\mu}{\textrm}{m}$) and a high diffraction efficiency of 81 % at an electric field of 40 V /${\mu}{\textrm}{m}$.textrm}{m}$.EX>.

Growth of ZnTe Thin Films by Oxygen-plasma Assisted Pulsed Laser Deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.185-185
    • /
    • 2011
  • ZnTe semiconductor is very attractive materials for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. Another application to photovoltaics proved that ZnTe is useful for the production of high-efficiency multi-junction solar cells [2,3]. By using the pulse laser deposition system, ZnTe thin films were deposited on ZnO thin layer, which is grown on (0001) Al2O3substrates. To produce the plasma plume from an ablated ZnO and ZnTe target, a pulsed (10 Hz) YGA:Nd laser with energy density of 95 mJ/$cm^2$ and wavelength of 266 nm by a nonlinear fourth harmonic generator was used. The laser spot focused on the surface of the ZnO and ZnTe target by using an optical lens was approximately 1 mm2. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen gas flow was controlled around 3 sccm by using a mass flow controller system. During the ZnTe deposition, the substrate temperature was $400^{\circ}C$ and the ambient gas pressure was $10^{-2}$ Torr. The structural properties of the samples were analyzed by XRD measurement. The optical properties were investigated by using the photoluminescence spectra obtained with a 325 nm wavelength He-Cd laser. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system.

  • PDF

Effect of the Photosensitizer on the Photo refractive Effect Using a Low $T_g$ Sol-Gel Glass

  • Choi, Dong-Hoon;Jun, Woong-Gi;Oh, Kwang-Yong;Yoon, Han-Na;Kim, Jae-Hong
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.250-255
    • /
    • 2003
  • We prepared the photorefractive sol-gel glass based on organic-inorganic hybrid materials containing a charge transporting molecule, second-order nonlinear optical (NLO) chromophore, photosensitizer, and plasticizer. Carbazole and 2-{ 4-[(2-hydroxy-ethyl)-methyl-amino]-benzylidene}-malononitrile were reacted with isocyanato-triethoxy silane and the functionalized silanes were employed to fabricate the efficient photorefractive media induding 2,4,7-trinitrot1uorenone (TNF) to form a charge transfer complex. The prepared sol-gel glass samples showed a large net gain coefficient and high diffraction efficiency at a certain composition. As the concentration of photosensitizer increased, the photorefractive properties were enhanced due to an increment of charge carrier density. Dynamic behavior of the diffraction efficiency was also investigated with the concentration of the photosensitizer.

Grating phase measurement of photopolymer hologram by self-diffraction oscillations (자체회절 진동에 의한 포토폴리머 홀로그램의 격자 위상측정)

  • 경천수;성기영;곽종훈;최옥식;이윤우;이인원;서호형;이일항
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.328-334
    • /
    • 1999
  • Methylene blue-sensitized photopolymerizable material based on acrylamide is investigated with two-wave energy coupling experiments. Differently from other studies, self-diffraction oscillations are observed and the grating phase is determined without applying external electric fields, moving nonlinear materials, and phase shifting one of two writing beams. The phase grating showed a phase shift of $\pm$50$^{\circ}$ with respect to the intensity grating. Modified Kogelnik's coupled wave equation considering the mixed gratings of phase and absorption gratings and nonzero spatial phase shifts of the gratings with respect to the intensity interference patterns formed during the two-wave energy coupling is discussed in detail to understand these phenomenon.

  • PDF

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

Characteristics of Organic NLO Materials in Silica Matrix Prepared by Sol-gel Process (졸-겔공정에 의해 실리카 구조체에 도입된 유기 NLO 물질의 특성)

  • Jung, Mie-Won;Mun, Jeong-Ho;Shul, Yong-Gun;Wada, Tatsuo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.482-487
    • /
    • 1993
  • Organic nonlinear optical materials such as MNA(2-Methyl-4-nitro-aniline), Carbazole 1(5-Nitro-9-hydroxyethyl Carbazole), Carbazole 2(5-Nitro-9-ethyl Carbazole) and DR 1(Disperse Red 1) were incorporated into silica matrix to form a composite thin films. The thermal stability and degree of degradation were compared to these organic-inorganic composite film. Among those films, Carbazole 1 and DR 1 which have terminal -OH group showed enhanced stability for thermal degradation. The effect of polarization and degree of relaxation for the composite thin films incorporated with Carbazole 1 were measured by the absorbance change of UV spectra with time. With polarization treatment of Carbazole 1 incorporated composite film, the intensity of UV absorbance was remarkably reduced. And slow relaxation of Carbazole 1 molecule was suggested from the slightly recovered intensity of UV absorbance after removing the electric field at rooma temperature.

  • PDF

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

Studies on the growth of organic single crystals of urea and THAMP (Urea와 THAMP 유기 단결정의 육성에 관한 연구)

  • 임창성;황완인;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.223-232
    • /
    • 1995
  • Abstract Urea($(NH_2)_2CO$) and THAMP (Tris(hydroxymethyl) aminomethane phosphate) are new organic nonlinear optical materials (NLO) for the device application such as the frequency conversion of laser radiation. The single crystals of urea and THAMP have been grown by the falling temperature method and the temperature difference method. The crystal growth parameters were presented associated with the molphology of the grown crystals. Based on the solubility measurements, methanol was a suitable solvent for the growth of urea. The solubilities of urea have a positive temperature coefficient and the heat of solution of urea was estimated to be -2.58 kcal/mol. The grown crystals of urea have the preferential growth habit in the z-axis. Additives such as $NH_4_H_2PO_4$, KCL, $H_3PO_4$, $CaCl_2{\cdot}2H_2O$, $C_2H_5OH$ were used for the favourable growth in the x - and y-axis and the preventive growth in the z-axis. The moleratio of THAM and H3P04 for the solution of THAMP was 1 : 1. The solubilities of THAMP have a positive temperature coefficient. The heat of solution was estimated to be - 1.70 kcal/ mol.

  • PDF

Syntheses, X-ray Structures and Second Harmonic Generation Efficiencies of MAP (Methyl (2,4-dinitrophenyl)-aminopropanoate) Analogues

  • Lee Joo-Hee;Kim Kimoon;Kim Jong-Hyun;Kim Jong-Jean
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.268-274
    • /
    • 1992
  • An attempt to improve the second harmonic generation (SHG) efficiency of MAP (methyl (2,4-dinitrophenyl)aminopropanoate) by modifying the substituents on the amino group of MAP is described. Several MAP analogues have been prepared using optically active amino acids alanine, phenylalanine and serine, and their SHG efficiencies measured. None of the MAP analogues exhibited SHG efficiencies as high as that of MAP. X-ray crystal structures of three MAP analogues have been determined. In the crystal structures of two of them, which were the derivatives of phenylalanine, two crystallographically-independent molecules existing in the asymmetric unit are aligned almost antiparallel. These structures are consistent with the very low SHG efficiencies of these compounds. On the other hand, the crystal structure of a serine derivative reveals substantial alignment of the dinitroaniline chromophore along the polar axis. However, the angle of 86.2° between the molecular charge tranfer axis and the polar axis of the crystal is still far away from the optimum value of 54.74° for the phase-matchable SHG. The structure is consistent with the SHG efficiency of this compound which is much higher than those of the phenylalanine derivatives but still lower than that of MAP. This study demonstrates the importance of the orientation of molecules in the crystal lattice in determining secod-order nonlinear optical properties of crystalline materials.

A Study on the Analysis of Electromagnetic Characteristics and Design of a Cylindrical Photonic Crystal Waveguide with a Low-Index Core (중심-동공을 갖는 원통형태 광결정 도파로의 전자장 특성 분석 및 설계 연구)

  • Kim, Jeong I.
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, a cylindrical photonic crystal waveguide with a low-index core is first proposed. The core can be filled with air, liquid, or arbitrary dielectric materials. Exact analyses for the electromagnetic field characteristics of guided modes, by using appropriate Bessel functions and applying the boundary conditions, are performed to find out the guiding characteristics of the proposed waveguide. For verification and usage in design and manufacturing process, the computer-calculation of the waveguide transmission characteristics is also performed by applying the rigorous full-vectorial finite difference method. Providing variations of the effective area for the fundamental mode of the designed waveguide with different numbers of cladding layers, ranging from 2.6056 ㎛2 to 5.9673 ㎛2 over the operation wavelength, generally as the core refractive index n1 is higher, the mode area becomes smaller and the result leads to more optimistic effect for nonlinear device applications.