• Title/Summary/Keyword: Nonlinear optical effect

Search Result 113, Processing Time 0.029 seconds

Nonlinear Optical Fibers for Electro-optic Applications

  • Han, Won-Taek;Kim, Bok-Hyeon
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.15-27
    • /
    • 2007
  • Fabrication and electro-optic applications of glass optical fibers were reviewed. Theoretical description on the electro-optic Kerr effect in glass optical fibers, particularly for the second-order optical nonlinearity was given. Fabrication procedure and the characterization of the nonlinear electro-optic fibers with internal electrodes were described. Several electro-optic devices based on the polarimetric cells made by the nonlinear optical fibers with internal electrodes were also discussed with the experimental results on the electro-optic effect.

  • PDF

Modeling of Feeding System for Optical Disk Drive and Nonlinear Dynamic Analysis of it (광 디스크 드라이브 이송계의 모델링 및 비선형 특성 분석)

  • Lee, Kwang-Hyun;Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.75-78
    • /
    • 2004
  • In an optical disk drive, a feeding system which is used to move the optical pick-up system to the target position and the proper control scheme of it are important in random access performance. Since the effect of control is directly affected by the modeling precision of the real system, the precise modeling to the real system should be acquired. Although a simple linear order modeling to the feeding system of an optical disk drive is useful in understanding of the overall dynamic characteristics, the dynamic characteristics which are belongs to the nonlinear area cannot be predicted correctly. Furthermore, the feeding system of an optical disk drive has many nonlinear characteristics such as a nonlinear friction and backlash. For this reason, the understanding of the nonlinear properties in the feeding system is very important. In this paper, the nonlinear items of the feeding system, friction and backlash, are introduced and the effect of it are investigated. Finally, the mathematical model considering the nonlinear properties is compared to the real system, and some comments of it are given.

  • PDF

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication Networks

  • Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.272-277
    • /
    • 2013
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Ji-Hyoung;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

  • PDF

Optical Interferometric Characterization of Nonlinear Optical Polymer Thin Films

  • Wu, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.149-155
    • /
    • 1998
  • The linear electro-optic (EO) effect is one of the second-order nonlinear optical effects existing in a noncentrosymmetric macroscopic system. In a polymer thin film, the noncentrosymmetry is achieved by electric field poling. The magnitude of the linear EO response is determined through the orientational distribution function of hyperpolarizable molecular dipoles. The relation between the linear EO coefficient and the second-order nonlinear optical susceptibility is explained. Three different methods of measuring the linear EO coefficient of a poled nonliner optical polymer thin film are introduced and discussed. All of them make use of the interferometric technique, the difference being in the optical parameters which are interfering.

  • PDF

Development of Minimally Invasive Mid-infrared Lipolysis Laser System for Effective Fat Reduction

  • Lee, Ji-Young;Ryu, Han Young;Seo, Young-Seok
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.82-89
    • /
    • 2021
  • Background and Objectives Due to changes in diet and lifestyle, the number of obese people worldwide is steadily increasing. Obesity has an adverse effect on a healthy life, so it needs treatment and improvement. Research related to this is continuously being conducted. Materials and Methods The laser system to compact designed using 808 nm laser diode and Neodymium Yttrium orthovanadate generates a 1064 nm wavelength, the periodically polarized nonlinear crystal pumping laser beam. The pulsed 1064 nm wavelength beam passing through the AO Q-switch is used as the pumping light of the nonlinear optical crystal and is irradiated to the periodic polarized nonlinear optical crystal with a quasi-phase matching period. Nonlinear optical crystals use an oven to control the temperature to generate the desired 1980 nm and 2300 nm wavelengths. Results The 1980 nm and 2300 nm wavelengths generated by temperature control of nonlinear optical crystals are effective for lipolysis. A fiber catheter was used so that the laser could be directly irradiated to the fat cells. In particular, the new wavelength (1980 nm, 2300 nm) can increase the fat reduction effect with low energy (1.3 W). When a laser with a combination wavelength of 1980 nm and 2300 nm was used, an average lipolysis effect of 20% was obtained. Conclusion A mid-infrared lipolysis laser system with excellent absorption of fat and water has been developed. We conducted a princlinical study to confirm the efficacy and safety of the lipolysis laser system, and obtained good results for lipolysis with low energy.

Thermo-optic Effects of Optical Temperature Sensor (광 온도센서의 열전.광 효과)

  • Lee, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2049-2054
    • /
    • 2006
  • This paper demonstrates a comparison of linear and nonlinear analyses for thermo-optic effects of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include theoretical analyses and experiment of the etched planar waveguide Bragg grating optical temperature sensor, Theoretical models with nonlinear than linear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF