• Title/Summary/Keyword: Nonlinear optic switch

Search Result 2, Processing Time 0.018 seconds

Optical Bistability in Nonlinear Etalons Filled with NOA81 Optical Adhesive (NOA81 Optical Adhesive를 중간층으로 하는 비선형 Etalon에서 나타나는 광쌍안정현상에 대한 연구)

  • Kong, Hong-Jin;Hwang, Wol-Yon;Lee, Sang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.387-391
    • /
    • 1987
  • We have observed the optical bistabilities at $5145{\AA}$ in nonlinear etalons filled with NOA8l optical adhesive which is cured with UV light under the temperature gradient of $7^{\circ}C/mm$ on the NOA81 layer surface. The critical switch-on irradiance and switch-on time are $17\;KW/cm^2$ and $350{\mu}sec$. respectively. The switching contrast of up to 8 observed in NOA81 etalons is higher than that of ZnS or ZnSe interference filter, and the thermo-optic coefficient (dn/ndT) of NOA81 is measured to be at least $-3.8{\times}10^{-4}/^{\circ}C$ which is larger in magnitude than that of ZnS or ZnSe.

  • PDF

Passively Q-switched Erbium Doped All-fiber Laser with High Pulse Energy Based on Evanescent Field Interaction with Single-walled Carbon Nanotube Saturable Absorber

  • Jeong, Hwanseong;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.203-206
    • /
    • 2017
  • We report a passive Q-switching of an all-fiber erbium-doped fiber laser delivering high pulse energy by using a high quality single-walled carbon nanotube saturable absorber (SWCNT-SA). A side-polished fiber coated with the SWCNT is employed as an in-line SA for evanescent wave interaction between the incident light and the SWCNT. This lateral interaction scheme enables a stable Q-switched fiber laser that generates high pulse energy. The central wavelength of the Q-switched pulse laser was measured as 1560 nm. A repetition rate frequency of the Q-switched laser is controlled from 78 kHz to 190 kHz by adjusting the applied pump power from 124 mW to 790 mW. The variation of pulse energy from 51 nJ to 270 nJ is also observed as increasing the pump power. The pulse energy of 270 nJ achieved at maximum pump power is 3 times larger than those reported in Q-switched all-fiber lasers using a SWCNT-SA. The tunable behaviors in pulse duration, pulse repetition rate, and pulse energy as a function of pump power are reported, and are well matched with theoretical expectation.