• Title/Summary/Keyword: Nonlinear numerical analysis

Search Result 2,021, Processing Time 0.028 seconds

Numerical Analysis of Nonlinear Acoustic Characteristics in Axisymmetric Resonant Tubes for Sonic Compressors (음향 압축기 설계를 위한 축대칭 공명튜브 내부음장의 수치해석 및 특성연구)

  • 전영두;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1009-1014
    • /
    • 2001
  • A numerical investigation on nonlinear oscillations of gas in an axisymmetric resonant tube is presented. When a tube is oscillated at a resonant frequency, acoustic variables such as density, velocity, and pressure undergo very large perturbation, often described as nonlinear oscillation. In order to analyze these phenomena, axisymmetric 2-D nonlinear governing equations have been derived and solved numerically. Numerical simulations were accomplished for cylindrical, conical, and 1/2 cosine-shape tubes, which have same volume and length. For conical and 1/2 cosine-shape tubes, very large variation of pressures can be induced without shock formation except the cylindrical tube. In addition, the results well agree to those of 1-D simple model analysis.

  • PDF

Analysis on the Forced Oscillation of Nonlinear Oscillators (비선형 진동자의 강제 진동에 관한 해석)

  • Karng, S.;Lee, J.;Jeon, J.;Kwak, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.585-590
    • /
    • 2000
  • Problems involved in the numerical analysis on the forced oscillation of nonlinear oscillators such a microbubble oscillation under ultrasound and Duffing oscillator were discussed. One of the problems is proper choice of the time scale of the driving force. which is related to the numerical artifacts due to the mismatch between the natural frequency of an oscillator(or bubble) and the characteristic frequency of the applied force. Such problem may occur in a nonlinear oscillator whose behavior is crucially dependent on the frequency of the applied force. The artificial resonance problem during the numerical evaluation of such nonlinear systems was also discussed.

  • PDF

Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction

  • Tabatabaiefar, Hamid Reza;Fatahi, Behzad;Ghabraie, Kazem;Zhou, Wan-Huan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.27-47
    • /
    • 2015
  • In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Nonlinear dynamic analysis by Dynamic Relaxation method

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.549-570
    • /
    • 2008
  • Numerical integration is an efficient approach for nonlinear dynamic analysis. In this paper, general category of the implicit integration errors will be discussed. In order to decrease the errors, Dynamic Relaxation method with modified time step (MFT) will be used. This procedure leads to an alternative algorithm which is very general and can be utilized with any implicit integration scheme. For numerical verification of the proposed technique, some single and multi degrees of freedom nonlinear dynamic systems will be analyzed. Moreover, results are compared with both exact and other available solutions. Suitable accuracy, high efficiency, simplicity, vector operations and automatic procedures are the main merits of the new algorithm in solving nonlinear dynamic problems.

Free Surface Tracking for the Accurate Time Response Analysis of Nonlinear Liquid Sloshing

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1517-1525
    • /
    • 2005
  • Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external excitation is of large amplitude or its frequency approaches natural sloshing frequencies. Naturally, the accurate tracking of time-varying free surface configuration becomes a key task for the reliable prediction of the sloshing time-history response. However, the numerical instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long-time beating simulation, when two simulation parameters, the relative time-increment parameter a and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the effects of these two parameters on the potential-based nonlinear finite element method introduced for the large amplitude sloshing flow.

Nonlinear analysis of cable-supported structures with a spatial catenary cable element

  • Vu, Tan-Van;Lee, Hak-Eun;Bui, Quoc-Tinh
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.583-605
    • /
    • 2012
  • This paper presents a spatial catenary cable element for the nonlinear analysis of cable-supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are determined, wherein the effect of self-weight and pretension are taken into account. In the case of the initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to determine precisely the unstressed length of the cables. Several classical numerical examples are solved and compared with the other available numerical methods or experiment tests showing the accuracy and efficiency of the present elements.

Robust attitude control and analysis for 3-axis stabilized spacecraft using sliding mode control (슬라이딩 모드 제어를 이용한 3축 안정화 위성의 자세 제어및 강건성 해석)

  • 신동준;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.692-695
    • /
    • 1997
  • Nonlinear robust attitude controller for 3-axis stabilized spacecraft is designed. Robust stability analysis for nonlinear spacecraft system with disturbance is conducted. External disturbances and parametric uncertainties decrease Spacecraft's attitude pointing accuracy. Sliding Mode Control(SMC) provides stability of system in the face of these disturbances and uncertainties. The concept of quadratic boundedness and quadratic stability are applied to the robust analysis for the nonlinear spacecraft system subject to bounded disturbance torques. Numerical simulation is conducted to compare the analysis result and actual nonlinear simulation. The simulation show that analysis result is valid.

  • PDF

Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections

  • Hadianfard, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.675-689
    • /
    • 2012
  • Most connections of steel structures exhibit flexible behaviour under cyclic loading. The flexible connections can be assumed as nonlinear rotational springs attached to the ends of each beam. The nonlinear behaviour of the connections can be considered by suitable moment-rotation relationship. Time-history analysis by direct integration method can be used as a powerful technique to determine the nonlinear dynamic response of the structure. In conventional numerical integration, the response is evaluated for a series of short time increments. The limitations on the size of time intervals can be removed by using Chen and Robinson improved time history analysis method, in which the integrated displacements are used as the new variables in integrated equation of motion. The proposed method permits longer time intervals and reduces the computational works. In this paper the nonlinearity behaviour of the structure is summarized on the connections, and the step by step improved time-history analysis is used to calculate the dynamic response of the structure. Several numerical calculations which indicate the applicability and advantages of the proposed methodology are presented. These calculations illustrate the importance of the effect of the nonlinear behaviour of the flexible connections in the calculation of the dynamic response of steel frames.

Nonlinear analysis of reinforced concrete frame under lateral load

  • Salihovic, Amir;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.281-295
    • /
    • 2018
  • This study aims to investigate the capacity of different models to reproduce the nonlinear behavior of reinforced concrete framed structures. To accomplish this goal, a combined experimental and analytical research program was carried out on a large scaled reinforced concrete frame. Analyses were performed by SAP2000 and compared to experimental and VecTor2 results. Models made in SAP2000 differ in the simulation of the plasticity and the type of the frame elements used to discretize the frame structure. The results obtained allow a better understanding of the characteristics of all numerical models, helping the users to choose the best approach to perform nonlinear analysis.