• Title/Summary/Keyword: Nonlinear modelling

Search Result 310, Processing Time 0.029 seconds

Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building

  • Bento, R.;Bhatt, C.;Pinho, R.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.177-195
    • /
    • 2010
  • This paper presents an appraisal of four nonlinear static procedures (CSM, N2, MPA and ACSM) employed in seismic assessment of plan-irregular buildings. It uses a three storey reinforced concrete plan-irregular frame building exemplifying typical older constructions of the Mediterranean region in the early 1970s that was tested in full-scale under bi-directional pseudo-dynamic loading condition at JRC, Ispra. The adequacy and efficiency of the simplified analytical modelling assumptions adopted were verified. In addition, the appropriate variants of code-prescribed NSPs (CSM and N2) to be considered for subsequent evaluation were established. Subsequent parametric studies revealed that all such NSPs predicted reasonably well both global and local responses, having the benchmark values been determined through nonlinear dynamic analyses using a suit of seven ground motions applied with four different orientations. The ACSM, however, predicted responses that matched slightly better the median dynamic results.

Numerical simulation of an adobe wall under in-plane loading

  • Nicola, Tarque;Guido, Camata;Humberto, Varum;Enrico, Spacone;Marcial, Blondet
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.627-646
    • /
    • 2014
  • Adobe is one of the oldest construction materials that is still used in many seismic countries, and different construction techniques are found around the world. The adobe material is characterized as a brittle material; it has acceptable compression strength but it has poor performance under tensile and shear loading conditions. Numerical modelling is an alternative approach for studying the nonlinear behaviour of masonry structures such as adobe. The lack of a comprehensive experimental database on the adobe material properties motivated the study developed here. A set of a reference material parameters for the adobe were obtained from a calibration of numerical models based on a quasi-static cyclic in-plane test on full-scale adobe wall representative of the typical Peruvian adobe constructions. The numerical modelling, within the micro and macro modelling approach, lead to a good prediction of the in-plane seismic capacity and of the damage evolution in the adobe wall considered.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method

  • Ranzi, G.;Bradford, M.A.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.131-158
    • /
    • 2009
  • This paper presents a modelling technique for the nonlinear analysis of composite steel-concrete beams with partial shear interaction. It extends the applicability of two stiffness elements previously derived by the authors using the direct stiffness method, i.e. the 6DOF and the 8DOF elements, to account for material nonlinearities. The freedoms are the vertical displacement, the rotation and the slip at both ends for the 6DOF stiffness element, as well as the axial displacement at the level of the reference axis for the 8DOF stiffness element. The solution iterative scheme is based on the secant method, with the convergence criteria relying on the ratios of the Euclidean norms of both forces and displacements. The advantage of the approach is that the displacement and force fields of the stiffness elements are extremely rich as they correspond to those required by the analytical solution of the elastic partial interaction problem, thereby producing a robust numerical technique. Experimental results available in the literature are used to validate the finite element proposed in the paper. For this purpose, those reported by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998, 1999) and Ansourian (1981) are utilised; these consist of six simply supported beams with a point load applied at mid-span inducing positive bending moment in the beams, three simply supported beams with a point load applied at mid-span inducing negative bending moment in the beams, and six two-span continuous composite beams respectively. Based on these comparisons, a preferred degree of discretisation suitable for the proposed modelling technique expressed as a function of the ratio between the element length and depth is proposed, as is the number of Gauss stations needed. This allows for accurate prediction of the nonlinear response of composite beams.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Modelling nonlinear polymer rheology is still challenging

  • Marrucci Giuseppe;Ianniruberto Giovanni
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.111-116
    • /
    • 2005
  • The new tube model with variable diameter (Marrucci and Ianniruberto, 2004), recently introduced to interpret new elongational data of polymer melts, is here extended to encompass arbitrary flows, specifically shear flows. The predicted results compare well with existing data of entangled polymer melts. Challenges still remain when the comparison is extended to recent elongational data on entangled solutions by Sridhar.

Optimization Technique for Parameter Estimation used in 2-Dimensional Modelling of Nonlinear Consolidation Analysis of Soft Deposits (2차원 모델화된 연약지반의 비선형 압밀해석시 이용되는 모델변수 추정을 위한 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The predicted consolidation behavior of in-situ soft clay is quite different from the meas ureal one mainly due to the approximate numerical modelling techniques as well as the uncertainties involved in soil properties and geological configurations. In order to improve the prediction, this paper takes the following pinto consideration : an optimization technique should be adopted for characterizing the in-situ properties from measurements and also an equivalent and efficient model be considered to incorporate the actual 3-D effects. The soil parameters used be the modified Camflay model, which have an effect on the process of consolidation, were back-analyzed by BFGS scheme on the basis of settlements and pore pressures measured in real sites. The optimization technique was implemented in a general consolidation analysis program SPINED. By using the program, one may be able to appropriately analyze the timetependent consolidation behavior of soft deposits.

  • PDF

Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System (비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구)

  • Kim, J.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

A Method of a Nonlinear Position Control of a Pneumatic Cylinder (비선형특성 보상에 의한 공기압 실린더의 위치제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2000
  • A method for the position control of a pneumatic cylinder using a linearized controller is proposed. Pneumatic cylinder has highly nonlinear characteristics and modelling of the system has been difficult. Compliance of the pneumatic cylinder is materially changed according to the operating position. So, in the case that fixed gain controller obtained by a linearized model at a specified position is used, response of the cylinder should be changed according to the operating position. In order to get a designed results regardless of operating positions, a controller for compensation of the nonlinear characteristic with a linearlization compensator is designed and simulation results show that this method is appropriate for the control object.

  • PDF