• Title/Summary/Keyword: Nonlinear growth equation

Search Result 50, Processing Time 0.025 seconds

NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.379-391
    • /
    • 2015
  • We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

NONLINEAR BIHARMONIC PROBLEM WITH VARIABLE COEFFICIENT EXPONENTIAL GROWTH TERM

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.277-288
    • /
    • 2010
  • We consider the nonlinear biharmonic equation with coefficient exponential growth term and Dirichlet boundary condition. We show that the nonlinear equation has at least one bounded solution under the suitable conditions. We obtain this result by the variational method, generalized mountain pass theorem and the critical point theory of the associated functional.

MULTIPLE SOLUTIONS RESULT FOR THE MIXED TYPE NONLINEAR ELLIPTIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.423-436
    • /
    • 2011
  • We obtain a theorem that shows the existence of multiple solutions for the mixed type nonlinear elliptic equation with Dirichlet boundary condition. Here the nonlinear part contain the jumping nonlinearity and the subcritical growth nonlinearity. We first show the existence of a positive solution and next find the second nontrivial solution by applying the variational method and the mountain pass method in the critical point theory. By investigating that the functional I satisfies the mountain pass geometry we show the existence of at least two nontrivial solutions for the equation.

STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYER IN CURVILINEAR COORDINATE SYSTEM USING NONLINEAR PSE (비선형 PSE를 이용한 압축성 경계층의 안정성 해석)

  • Gao, B.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.134-140
    • /
    • 2007
  • Nonlinear parabolized stability equations for compressible flow in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Blasius flow is tested. The results of the present computation show good agreement with DNS data. Nonlinear interaction can make the T-S fundamental wave more unstable and the onset of its amplitude decay is shifted downstream relative to linear case. For nonlinear calculations, rather small difference in initial amplitude can produce large change during nonlinear region. Compressible secondary instability at Mach number 1.6 is also simulated and showed that 1.1% initial amplitude for primary mode is enough to trigger the secondary growth.

  • PDF

NONLINEAR HEAT EQUATIONS WITH TRANSCENDENTAL NONLINEARITY IN BESOV SPACES

  • Pak, Hee Chul;Chang, Sang-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.773-784
    • /
    • 2010
  • The existence of solutions in Besov spaces for nonlinear heat equations having transcendental nonlinearity: $$\frac{\partial}{{\partial}t}u-{\Delta}u=F(u)$$ is investigated. In particular, it is proved the local existence and blow-up phenomena of the solutions in Besov spaces for nonlinear heat equations corresponding to two transcendental nonlinear functions $F(u){\equiv}{\mid}u{\mid}e^{u^2}$ and $F(u){\equiv}e^u$ of rapid growth.

An Existence Result for Neumann Type Boundary Value Problems for Second Order Nonlinear Functional Differential Equation

  • Liu, Yuji
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.637-650
    • /
    • 2008
  • New sufficient conditions for the existence of at least one solution of Neumann type boundary value problems for second order nonlinear differential equations $$\array{\{{p(t)\phi(x'(t)))'=f(t,x(t),\;x(\tau_1(t)),\;{\cdots},\;x(\tau_m(t))),\;t\in[0,T],\\x'(0)=0,\;x'(T)=0,}\,}$$, are established.

NUMERICAL SIMULATION OF THE RIESZ FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

  • Zhang, H.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and $Gr\ddot{u}nwald$-Letnikov(G-L) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

  • PDF

An Experimental Equation on the Fatigue Crack Growth Rate Behavior (피로 균열 전파 거동에 대한 실험식)

  • Kim, Sang-Chul;Kang, Dong-Myeong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 1991
  • We propose the crack growth rate equation which applied over three regions (threshold region, stable region, unstable region) of fatigue crack propagation. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.05, R=0.2 and R=0.4. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. The fatigue crack growth rate equation is given by $da/dN={\beta} (1-R)^{\delta}\({\DELTA}K-{\DELTA}K_t)^{\alpha} / (K_{cf}-K_{max})$${\alpha}, {\beta}$ , and ${\delta}$ are constants, and ${\Delta}K_t$ is stress intensity factor range at low ${\Delta}K$ region. The constants are obtained from nonlinear least square method. $K_{ef}$is critical fatigue stress intensity factor. The relation between half crack length and number of cycles obtained by integrating the crack growth rate equation is in agreement with the experimental data. It is also experimented with constant maximum stress and decreasing stress ratios, and the fatigue growth rate of each material is in accord with the proposed equation.

  • PDF