• 제목/요약/키워드: Nonlinear dynamic model

검색결과 1,405건 처리시간 0.029초

중장비 구동체계의 제어용 동적 모델에 관한 연구 (A study on the dynamic modeling of driving system of a heavy industrial vehicle)

  • 홍성욱;강민식;이종원;김광준
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.222-233
    • /
    • 1987
  • 본 논문에서는 이와 관련하여 전형적인 중장비 구동체계를 대상으로 동적모델 을 유도하는 일련의 과정을 제시하고 구동체계의 효율적 제어를 위한 간략화된 모델을 유도하였다.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

부구조물 합성법을 이용한 슬라이딩 모드 해석 (Sliding Mode Analysis Using Substructure Synthesis Method)

  • 김대관;이민수;한재흥;고태환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1366-1371
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. Component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its model parameters are compared with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

  • PDF

비선형 비행 시스템을 위한 $H_{\infty}$ 접근법 기반 적응 신경망 동적 표면 제어 (Adaptive Neural Dynamic Surface Control via $H_{\infty}$ Approach for Nonlinear Flight System)

  • 유성진;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1728-1729
    • /
    • 2007
  • This paper presents an adaptive neural dynamic surface control (DSC) approach with $H_{\infty}$ tracking performance for a full dynamics of a nonlinear flight system. It is assumed in this paper that model uncertainties such as structured and unstrutured uncertainties and external disturbances influence the nonlinear aircraft model. In our control system, self recurrent wavelet neural networks (SRWNNs) are used to compensate model uncertainties of the nonlinear flight system, and an adaptive DSC technique is extended for disturbance attenuation of the nonlinear flight system. From Lyapunov stability theorem, it is shown that $H_{\infty}$ performance from external disturbances can be obtained. Finally, we perform the simulation for the nonlinear six-degree-of-freedom F-16 aircraft model to confirm the effectiveness of the proposed control system.

  • PDF

Ambient vibration based structural evaluation of reinforced concrete building model

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.335-350
    • /
    • 2018
  • This paper presents numerical modelling, modal testing, finite element model updating, linear and nonlinear earthquake behavior of a reinforced concrete building model. A 1/2 geometrically scale, two-storey, reinforced concrete frame model with raft base were constructed, tested and analyzed. Modal testing on the model using ambient vibrations is performed to illustrate the dynamic characteristics experimentally. Finite element model of the structure is developed by ANSYS software and dynamic characteristics such as natural frequencies, mode shapes and damping ratios are calculated numerically. The enhanced frequency domain decomposition method and the stochastic subspace identification method are used for identifying dynamic characteristics experimentally and such values are used to update the finite element models. Different parameters of the model are calibrated using manual tuning process to minimize the differences between the numerically calculated and experimentally measured dynamic characteristics. The maximum difference between the measured and numerically calculated frequencies is reduced from 28.47% to 4.75% with the model updating. To determine the effects of the finite element model updating on the earthquake behavior, linear and nonlinear earthquake analyses are performed using 1992 Erzincan earthquake record, before and after model updating. After model updating, the maximum differences in the displacements and stresses were obtained as 29% and 25% for the linear earthquake analysis and 28% and 47% for the nonlinear earthquake analysis compared with that obtained from initial earthquake results before model updating. These differences state that finite element model updating provides a significant influence on linear and especially nonlinear earthquake behavior of buildings.

비선형 타이어모델을 이용한 4WS 자동차의 주행특성 해석 (Dynamic Characteristics Analysis of Four Wheel Steering Vehicles Using Nonlinear Tire Model)

  • 김형내;김석일;김동룡;김건상
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.110-119
    • /
    • 1997
  • Four wheel steering(4WS) systems which can control the lateral and yaw motions of vehicles by steering front and rear wheels simultaneously, have been regarded as effective for improving the stability and handing performance of vehicles. However, since the 4WS systems depend only on the lateral force of tire, they have some limitation due to the nonlinear characteristics of tire related with the saturation phenomenon of lateral force to the slip angle of tire in a near-limit-performance maneuvering range. In this study, in other to evaluate the effect of nonlinear characteristics of tire on the dynamic performance of vehicles, a new concept for driving the cornering stiffness of nonlinear tire by using the "Magic Formula" tire model is proposed. In addition, the nonlinear 4WS vehicle model is constructed based on the proposed cornering stiffness of nonlinear tire. It is noted from simulation that the nonlinear characteristics of tire affect greatly on the 4WS vehicle performance.rformance.

  • PDF

Chaotic Behavior in a Dynamic Love Model with Different External Forces

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.283-288
    • /
    • 2015
  • In this paper, we propose a dynamic mathematical model of love involving various external forces, in order to analyze the chaotic phenomena in a love model based on Romeo and Juliet. In addition, we investigate the nonlinear phenomena in a love model with external forces using time series and phase portraits. In order to describe nonlinear phenomena precisely using time series and phase portraits, we vary the type of external force, using models such as a sine wave, chopping wave, and square wave. We also apply various different parameters in the Romeo and Juliet model to acquire chaotic dynamics.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

Material model for load rate sensitivity

  • Kozar, Ivica;Ibrahimbegovic, Adnan;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.141-162
    • /
    • 2018
  • This work presents a novel model for analysis of the loading rate influence onto structure response. The model is based on the principles of nonlinear system dynamics, i.e., consists of a system of nonlinear differential equations. In contrast to classical linearized models, this one comprises mass and loading as integral parts of the model. Application of the Kelvin and the Maxwell material models relates the novel formulation to the existing material formulations. All the analysis is performed on a proprietary computer program based on Wolfram Mathematica. This work can be considered as an extended proof of concept for the application of the nonlinear solid model in material response to dynamic loading.

스텝 모으터의 동특성해석에 관한 연구 (The study on the dynamic analysis of a step motor)

  • 천희영;박귀태
    • 전기의세계
    • /
    • 제29권1호
    • /
    • pp.58-64
    • /
    • 1980
  • In this paper, this objective is to obtain the mathematical model which describes the dynamic characteristics of variable reluctance(VR) step motor, the most important and most widely used motor in practice. In the development of the mathematical model for VR step motor, first the general nonlinear dynamic equations which describe the N-phase VR step motor are derived. These general equations are then applied to the multiple-step type of VR step motor in case, for simplicity, maynetic saturation and core lossess in the iron are neglected. These nonlinear dynamic equations are numerically analysed by the computer simulation, through which the performance characteristics of a step motor undertest are investigated under the various operating conditions.

  • PDF