• Title/Summary/Keyword: Nonlinear dynamic model

Search Result 1,408, Processing Time 0.028 seconds

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Seismic Behavior Analysis of a Bridge Considering stiffness Degradation due to Abutment-Soil Interaction (교대-토체의 강성저하를 고려한 교량의 지진거공분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.357-366
    • /
    • 2000
  • Longitudinal dynamic behaviors of a bridge system under seismic excitations are examined with various magnitudes of peak ground accelerations. The stiffness degradation due to abutment-soil interaction is considered in the bridge model which may play the major role upon the global dynamic characteristics. The idealized mechanical model for the whole ridge system is proposed by adopting the multiple-degree-of-freedom system which can consider components such as pounding phenomena friction at the movable supports rotational and translational motions of foundations and the nonlinear pier motions. The abutment-soil interaction is simulated by utilizing the one degree-of-freedom system with nonlinear spring. The stiffness degradation of the abutment-soil system is found to increase the relative displacement under moderate seismic excitations.

  • PDF

Control of Two-Wheeled Welding Mobile Robot For Tracking a Smooth Curved Welding Path (완만한 곡선경로 추적용 이륜 용접이동로봇의 제어)

  • Ngo Manh Dung;Phuong Nguyen Thanh;Kim Hak-Kyeong;Kim Sang-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.85-86
    • /
    • 2006
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundary function is proposed and applied to a two-wheeled voiding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the new sliding is proposed to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system will be shown through the Lyapunov method. The simulations is shown to prove the effectiveness of the proposed controller.

  • PDF

Stability of five layer sandwich beams - a nonlinear hypothesis

  • Smyczynski, Mikolaj J.;Magnucka-Blandzi, Ewa
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.671-679
    • /
    • 2018
  • The paper is devoted to the stability analysis of a simply supported five layer sandwich beam. The beam consists of five layers: two metal faces, the metal foam core and two binding layers between faces and the core. The main goal is to elaborate a mathematical and numerical model of this beam. The beam is subjected to an axial compression. The nonlinear hypothesis of deformation of the cross section of the beam is formulated. Based on the Hamilton's principle the system of four stability equations is obtained. This system is approximately solved. Applying the Bubnov-Galerkin's method gives an ordinary differential equation of motion. The equation is then numerically processed. The equilibrium paths for a static and dynamic load are derived and the influence of the binding layers is considered. The main goal of the paper is an analytical description including the influence of binding layers on stability, especially on critical load, static and dynamic paths. Analytical solutions, in particular mathematical model are verified numerically and the results are compared with those obtained in experiments.

Design of steel moment frames considering progressive collapse

  • Kim, Jinkoo;Park, Junhee
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • In this study the progressive collapse potential of three- and nine-story special steel moment frames designed in accordance with current design code was evaluated by nonlinear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when a first story column was suddenly removed. Then the size of beams required to satisfy the failure criteria for progressive collapse was obtained by the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA guideline.

T-S Fuzzy Modeling of Synchronous Generator in a Power System (전력계통 동기발전기의 T-S Fuzzy 모델링)

  • Lee, Hee-Jin;Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1642-1651
    • /
    • 2008
  • The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.

Position Control of the Trolley and Spreader Using Pole-placement Method (극점배치기법을 이용한 트롤리 및 스프레더의 위치제어)

  • Lee, Tae-Young;Kim, Myun-Hee;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • Crane operation for transporting heavy loads causes swinging motion at the loads. This sway causes the suspension ropes to leave their grooves and leads to possibility of serious damages. Generally crane is operated by expert's knowledge. Therefore, a satisfactory control method to supress object sway during transport is indispensible. The dynamic behavior of the crane shows nonlinear characteristics. when the length of the rope is changed the crane is time varying system and the design of anti-sway controller is very difficult. In this paper, the nonlinear dynamic model for the industrial overhead crane is derived. and the feedback gain matrix based on the pole-placement method is proposed to supress the swing motion and control the position of the crane. The performance of the controller for the crane model is simulated on the personal computer.

  • PDF

A Study on Dynamic Characteristics Analysis and Servo Control of Linear Motor (리니어 모터의 동적특성 분석 및 서보제어에 관한 연구)

  • Sim, Hyun-Suk;Hwang, Won-Jun;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • For high-accuracy position control of a linear motor, it has been proposed a nonlinear controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated by computer simulations.

Control method for DC Motor based on Neural Networks (인공신경회로망에 기초한 직류모터제어)

  • Park, Jin-Hyun;Choi, Young-Kiu;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.248-250
    • /
    • 1993
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We train the inverse dynamic model of DC motor and nonlinear load using the neural network and construct speed control system based on the traind dynamic model and current control mode. Speed prediction scheme using neural network is also proposed the alleviate the time delay effect caused by the computation time of neural network. Simulation results show good performances of the control system. Finally, hardware configuration of the control system is outlined.

  • PDF