• Title/Summary/Keyword: Nonlinear distortion

Search Result 388, Processing Time 0.02 seconds

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

A Performance Comparison of mSE-MMA and mDSE-MMA Adaptive Equalization Algorithm in 16-QAM Signal Transmission (16-QAM 신호 전송에서 mSE-MMA와 mDSE-MMA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 2021
  • This paper related with the performance comparison of mSE-MMA and mDSE-MMA adaptive equalization algorithm which is possible to reduce the intersymbol interference that occurs in the nonlinear communication channel transmitting 16-QAM signal. This two algorithm is possible to reduce the computational load compared to the current MMA algorithm, it has the degraded equalization performance due to simplified arithmetic in order to applying the mobile communication terminal. In order to improve the performance degradation, they controls the step size according to the existence of arbitrary radius circle of equalizer output compared to transmitted symbol point. The variation of step size according to this principle is applied to the SE-MMA and DSE-MMA, namely mSE-MMA and mDSE-MMA algorithm, the algorithm's performance were compared in the same channel and noise environment by computer simulation. As a result of simulation, the mSE-MMA has more superior to the mDSE-MMA in residual value of every performance index and SER performance, and the vice versa result in convergence speed.

A Performance Comparison of CM-MMA and RMMA Blind Equalization Algorithm in QAM Signal Transmission (QAM 신호 전송에서 CM-MMA와 RMMA 블라인드 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.79-84
    • /
    • 2019
  • This paper compare the performance of CM-MMA (Constellation Matching-MMA) and RMMA (Region-based MMA) blind equalization algorithm for improve the QoS by minimizing the intersymbol interference that is occurred in nonlinear communication channel when transmitting the QAM signal. In the tap coefficient update for adaptive, CM-MMA use the error of nonconstant modulus signal adding the current MMA cost fuction and constellation matching error terms of sinusoidal power function, and the RMMA use the error by transfoms the nonconstant modulus signal of equalizer output constellation to 4-QAM constant modulus signal. They has different equalization performance by these error signal, it were compared in this paper by simulation, and performance index such as output signal constellation of equalizer, residual isi, maximum distortion, SER curves are applied for this. As a result of computer simulation, the RMMA has more better performance in the every performance index, convergence speed, residual value, noise robustness compared to CM-MMA.

A Study on Coating Film Thickness Measurement in vehicle Using Eddy Current Coil Sensor (와전류 코일 센서를 통한 차량용 코팅막 측정에 관한 연구)

  • Park, Hwa-Beom;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1131-1138
    • /
    • 2019
  • The importance of coatings has been increasing for different purposes such as prevention of static electricity of auto parts or products, improvement of abrasion and corrosion resistance, and enhancement of esthetics. As a method for measuring the thickness of a coating film, a contact method with probe is commonly used. However, it is problematic that accuracy of the sensor is degraded due to sensor output distortion or load phenomenon, which is caused by a change in magnetic permeability of the core. In this study, we propose a method to reduce the measurement error of the coating film by applying the optimized circuit design and the thickness measurement algorithm to the problems caused by the nonlinear characteristics. The tests result which have been taken with different thickness coating samples show that the measurement accuracy is within ${\pm}2%$.

Direct Harmonic Voltage Control Strategy of Shunt Active Power Filters Suitable for Microgrid Applications

  • Munir, Hafiz Mudassir;Zou, Jianxiao;Xie, Chuan;Li, Kay;Younas, Talha;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.265-277
    • /
    • 2019
  • The application of shunt active power filters (S-APFs) is considered to be the most popular approach for harmonic compensation due to its high simplicity, ease of installation and efficient control. Its functionality mainly depends upon the rapidness and precision of its internally built control algorithms. A S-APF is generally operated in the current controlled mode (CCM) with the detection of harmonic load current. Its operation may not be appropriate for the distributed power generation system (DPGS) due to the wide dispersion of nonlinear loads. Despite the fact that the voltage detection based resistive-APF (R-APF) appears to be more appropriate for use in the DPGS, the R-APF experiences poor performance in terms of mitigating harmonics and parameter tuning. Therefore, this paper introduces a direct harmonic voltage detection based control approach for the S-APF that does not need a remote harmonic load current since it only requires a local point of common coupling (PCC) voltage for the detection of harmonics. The complete design procedure of the proposed control approach is presented. In addition, experimental results are given in detail to validate the performance and superiority of the proposed method over the conventional R-APF control. Thus, the outcomes of this study approve the predominance of the discussed strategy.

A Performance Evaluation of QE-MMA Adaptive Equalization Algorithm by Quantizer Bit Number (양자화기 비트수에 의한 QE-MMA 적응 등화 알고리즘 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 2019
  • This paper evaluates the QE-MMA (Quantized Error-MMA) adaptive equalization algorithm by the number of quantizer in order to compensates the intersymbol interference due to channel in the transmission of high spectral efficient nonconstant modulus signal. In the adaptive equalizer, the error signal is needed for the updating the tap coefficient, the QE-MMA uses the polarity of error signal and correlation multiplier that condered nonlinear finite bit power-of-two quantizing component in order to convinience of H/W implementation. The different adaptive equalization performance were obtained by the number of quantizer, these performance were evaluated by the computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion, MSE, SER were applied as a performance index. As a result of computer simulation, it improved equalization performance and reduced equalization noise were obtained in the steady state by using large quantizer bit numbers, but gives slow in convergence speed for reaching steady state.

Compensation for Distorted WDM Signals by Periodic-shaped Dispersion Map and Non-midway Optical Phase Conjugator (주기적 구조의 분산 맵과 Non-midway 광 위상 공액기에 의한 왜곡된 WDM 신호의 보상)

  • Kweon, Soon-Nyu;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • In order to install ultra wide band and ultra long-haul transmission link based on standard single mode fiber, optical signal distortion due to chromatic dispersion and nonlinear Kerr effect must to be compensated. In this paper, optical link consisted of dispersion management and optical phase conjugation is proposed for compensation of the distorted wavelength division multiplexed (WDM) channels. Dispersion map profile in the proposed dispersion-managed link is configured by periodic repetitive shape, and optical phase conjugator is placed at various position including the midway of total transmission length. It is confirmed from simulation results that when the residual dispersion per span (RDPS) selected in the proposed dispersion-managed link to be large, the compensation of distorted WDM channels in the non-midway OPC system is more improved than the conventional dispersion-managed link.

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.

Compensation Characteristics Depending on Extinction Ratio of RZ Pulse in Dispersion-managed Link Combined with MSSI (MSSI와 결합된 분산 제어 링크에서 RZ 펄스의 소광비에 따른 보상 특성)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.123-128
    • /
    • 2024
  • When mid-span spectral inversion (MSSI), which inverts the propagated wave into phase-conjugated wave in the middle of the entire transmission distance, is combined with dispersion-managed link, it is very effective in compensating for the wavelength division multiplexed (WDM) signal distortion due to chromatic dispersion and nonlinear effects. In this MSSI combined dispersion-managed link, the shape of the dispersion map, channel data rate, channel wavelength and wavelength spacing, etc. affect the compensation and, consequently, determine the transmission distance and capacity of the WDM signal. In this paper, the compensation according to the extinction ratio of the return-to-zero (RZ) pulse that constitutes the WDM signal in the MSSI combined distributed control link was numerically analyzed. As a result of the simulation, it was conformed that the extinction ratio to obtain the best compensation should be determined depending on the shape of the dispersion map and the size of the residual dispersion per span, which determines the specific shape of the dispersion map. These results show a significant difference from the results in a general optical transmission system, where as the extinction ratio increases, the power difference between the '1' and '0' signals increases, thereby improving reception performance.

Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information (개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법)

  • Jeong, Jin-Seong;Kim, Hyun-Tae;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.96-110
    • /
    • 2017
  • Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.