• Title/Summary/Keyword: Nonlinear bearing stiffness

Search Result 76, Processing Time 0.019 seconds

Performance Experiments and Analysis of Nonlinear Behavior for HDRB using in Seismic Isolation (면진용 고감쇠 적층고무베어링의 성능 특성 실험 및 비선형 거동해석)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.73-86
    • /
    • 1998
  • The purpose of this paper is to evaluate the shear stiffness, hysteretic behavior, and ultimate behavior of HDRB(High Damping Rubber Bearing), which will be included in the seismic isolation design guideline as requirements. To do this, two 1/8 scaled HDRB are designed, fabricated, and tested to show the mechanical characteristics. The shear stiffness obtained from the proposed equation of the shear stiffness shows a good agreement with those of the experiments. For analysis of the hysteretic behavior of HDRB using the modified rate model, the parameter equations are obtained from the experiments. Using the obtained parameter equations for the modified rate model, the seismic response analyses are carried out for 1-D system. The results of analysis well follow the hysteretic behavior of HDRB obtained from the experiments. To evaluate the ultimate behavior of HDRB used in this paper, the analyses are carried out using the modified macro model, which can consider the large shear deflection. The critical shear strain(CSS) is defined to express the maximum allowable shear strain and vertical load. From the analyses, the CSS, showing the instability, decreases significantly as increased the vertical loads. The CSS is not appeared for the design vertical load in the used HDRB. In analysis using about 5 times of design vertical load, the HDRB start to show the instability transient and for about 7 times, the CSS is about 350%.

  • PDF

A numerical study on the seismic behavior of a composite shear wall

  • Naseri, Reza;Behfarnia, Kiachehr
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.279-289
    • /
    • 2018
  • Shear walls are one of the important structural elements for bearing loads imposed on buildings due to winds and earthquakes. Composite shear walls with high lateral resistance, and high energy dissipation capacity are considered as a lateral load system in such buildings. In this paper, a composite shear wall consisting of steel faceplates, infill concrete and tie bars which tied steel faceplates together, and concrete filled steel tubular (CFST) as boundary columns, was modeled numerically. Test results were compared with the existing experimental results in order to validate the proposed numerical model. Then, the effects of some parameters on the behavior of the composite shear wall were studied; so, the diameter and spacing of tie bars, thickness and compressive strength of infill concrete, thickness of steel faceplates, and the effect of strengthening the bottom region of the wall were considered. The seismic behavior of the modeled composite shear wall was evaluated in terms of stiffness, ductility, lateral strength, and energy dissipation capacity. The results of the study showed that the diameter of tie bars had a trivial effect on the performance of the composite shear wall, but increasing the tie bars spacing decreased ductility. Studying the effect of infill concrete thickness, concrete compressive strength, and thickness of steel faceplates also showed that the main role of infill concrete was to prevent buckling of steel faceplates. Also, by strengthening the bottom region of the wall, as long as the strengthened part did not provide a support performance for the upper part, the behavior of the composite shear wall was improved; otherwise, ductility of the wall could be reduced severely.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels (응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석)

  • Lim, Yujin;Kim, DaeSung;Cho, Hojin;Sagong, Myoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.386-393
    • /
    • 2013
  • In this study, the so-called repeated plate load bearing test (RPBT) used to get $E_{v2}$ values in order to check the degree of compaction of subgrade, and to get design parameters for determining the thickness of the trackbed foundation, is investigated. The test procedure of the RPBT method is scrutinized in detail. $E_{v2}$ values obtained from the field were verified in order to check the reliability of the test data. The $E_{v2}$ values obtained from high-speed rail construction sites were compared to converted modulus values obtained from resonant column (RC) test results. For these tests, medium-size samples composed of the same soils from the field were used after analyzing stress and strain levels existing in the soil below the repeated loading plates. Finite element analyses, using the PLAXIS and ABAQUS programs, were performed in order to investigate the impact of the strain influence coefficient. This was done by getting newly computed $I_z$ to get the precise strain level predicted on the subgrade surface in the full track structure; under wheel loading. It was verified that it is necessary to use precise loading steps to construct nonlinear load-settlement curves from RPBT in order to get correct $E_{v2}$ values at the proper strain levels.