• Title/Summary/Keyword: Nonlinear amplifier

Search Result 230, Processing Time 0.023 seconds

Digital Predistortion for Multi-band/Multi-mode Transmission Systems (다중 대역 전송 시스템을 위한 전치왜곡 알고리즘)

  • Choi, Sung-Ho;Lee, Byung-Hwan;Lee, Chul-Soo;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.48-58
    • /
    • 2012
  • New digital predistortion technique is proposed for power amplifier linearization in multi-band transmission systems. We consider a system where muli-band signals are combined and amplified by a single power amplifier (PA). In this system, the PA output is distorted by the nonlinear cross-products between different band signals as well as their own nonlinear self-products. To compensate these nonlinear effects, we propose a multiple PD structure. Each PD removes the nonlinear cross-products and self-products to mitigate the spectral regrowth for the corresponding band. Since the PD parameters for different bands are linked together, it is difficult to find the PD parameters separately. Thus, we propose an iterative method for finding the PD parameters jointly. For demonstration of the proposed method, multi-band characteristics of PA are extracted from a commercial power amplifier. Computer simulation was executed based on the PA parameters. The simulation results show that the proposed method can effectively linearize the PA and remove spectral regrowth at each signal band.

Design of a Bias Circuit for Reducing Memory Effects (Memory Effect를 줄이기 위한 바이어스 회로의 설계)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.115-119
    • /
    • 2017
  • Intermodulation distortion degrades the S/N(signal-to-noise) of the original signal and also affects the adjacent channels. Intermodulation distortion is mainly caused by the nonlinear characteristics of the power amplifier. If the power amplifier with nonlinear characteristics has a memory effect, the intermodulation distortions occurred in the power amplifier are generated in various and complex forms. The predistorter is used as a way to improve intermodulation distortions. In order to efficiently utilize the performance of the predistorter, the memory effect of the power amplifier must be reduced. In this paper, we describe the design method of bias circuit to reduce the memory effect in power amplifiers. To reduce the memory effect, the bias circuit must have a high impedance for the signal and a low impedance for the envelope(modulating signal) and the second harmonic component of the signal. To verify the performance of the bias circuit designed considering the memory effect, a power amplifier operating at 170 ~ 220MHz was designed and implemented. The designed bias circuit has a large impedance in the operating frequency band and low impedance in the envelope signal and the second harmonic of the signal. As a result of the performance measurement, it was found that the asymmetric intermodulation distortion component is improved by 3.7dB.

Performance of DS-CDMA forward Link Due to Nonlinear Power Amplifier in Multiuser Environment (다중사용자 환경에서 비선형 전력증폭기로 인한 DS/CDMA의 순방향 성능 분석)

  • 최성호;목진담;손동철;김성철;정희창;조경록
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.479-486
    • /
    • 1999
  • In this paper the system performance degradation resulting from nonlinear transmitter power amplifier which is essential to increase the efficiency is analyzed in a forward link CDMA system. The power amplifier is modeled by power series model which includes only odd-order terms. The effects of power amplifier's nonlinearity such as intersymbol interference, phase distortion on the RF system performance were visualized by examining the distorted time domain waveforms, signal vector constellation. And through the investigation of the power spectrum density of the transmitted signal, spectral regrowth or sideband regrowth which is result from amplitude distortion can be seen. All these characteristics result in BER performance degradation due to other user interferences and intersymbol interference. The analysis technique described here applies not only to power amplifier but also to any other nonlinear components such as mixers and switches. Also the effects of adjacent channel interference and supurious emission can be analysed between different systems.

  • PDF

A Study on the Fabrication of 1W Power Amplifier for IMT2000 Repeater Using Nonlinear Analysis (비선형 해석법을 이용한 IMT2000 중계기용 1W 전력증폭기 제작 연구)

  • 전광일
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.83-90
    • /
    • 2000
  • A simple low-cost and small size 1.88-198 GHz Band RF power amplifier module is developed for IMT2000 repeater. The power amplifier consists of two stage amplifiers that the first stage amplifier is drive amplifier using discrete type P-HEMT (ATF-34143, 800 micron gate width, Agilent Technologies) and the second is power amplifier with 300Bm 1dB gain compression point using GaAs FET(EFA240D-SOT89, 2400 micron gate width, Excelics Semiconductor). this power amplifier module feature a 29.5dBm 1dB gain compression point, 29.5dB gain, 42dBm 3rd order intercept point(OIP3) and -10dB/-l2dB input/output return loss over the 1880-1980 MHz. This PA module is fully integrated using MIC technology into a small size and design by full nonlinear design technologies. The dimensions of this PA module are 42(L) $\times$ 34(W) mm.

  • PDF

Parallel M-band DWT-LMS Algorithm to Improve Convergence Speed of Nonlinear Volterra Equalizer in MQAM System with Nonlinear HPA (비선형 HPA를 가진 M-QAM 시스템에서 비선형 Volterra 등화기의 수렴 속도 향상을 위한 병렬 M-band DWT-LMS 알고리즘)

  • Choi, Yun-Seok;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.627-634
    • /
    • 2007
  • When a higher-order modulation scheme (16QAM or 64QAM) is applied to the communications system using the nonlinear high power amplifier (HPA), the performance can be degraded by the nonlinear distortion of the HPA. The nonlinear distortion can be compensated by the adaptive nonlinear Volterra equalizer using the low-complexity LMS algorithm at the receiver. However, the LMS algorithm shows very slow convergence performance. So, in this paper, the parallel M-band discrete wavelet transformed LMS algorithm is proposed in order to improve the convergence speed. Throughout the computer simulations, it is shown that the convergence performance of the proposed method is superior to that of the conventional time-domain and transform-domain LMS algorithms.

A Study on Feedforward System for IMT-2000

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.505-513
    • /
    • 2006
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping. because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt. the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

Pump Light Porer of Wideband Optical Phase Conjugator Dependence on Amplifier Spacing in 320 Gbps WDM Systems with MSSI

  • Lee Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.735-744
    • /
    • 2006
  • In this paper, the optimum pump light powers of optical phase conjugator(OPC) are numerically investigated as a function of amplifier spacing in 1,200 km $8{\times}40$ Gbps WDM systems with 0.1, 0.4, 0.8, or 1.6 ps/nm/km dispersion coefficient. It is confirmed that the variation of optimal pump light power dependence on amplifier spacing for NRZ transmission system is smaller than that for RZ transmission system through the evaluations and analysis of eye opening penalty(EOP) characteristics. And, in both cases of NRZ and RZ transmission, the variation of optimal pump light power is more increased as amplifier spacing becomes longer. Additionally, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is 50 km.

A Study on Feedforward System for IMT-2000

  • Jeon, Joong-Sung;Choi, Dong-Muk;Kim, Min-Jung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1176-1185
    • /
    • 2005
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

  • PDF

A Study on Linearization of Intermodulation Distortion for WCDMA

  • Jeon, Joong-Sung;Kim, Dong-il
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth Experimental results are presented for IMT-2000 frequency band The center frequency of the feedforward amplifier is 2140MHz with 60MHz bandwidth When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 28dB. In this case, the output power of feedforward amplifier reduced 3.5dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7% for multicarrier signals.

Analysis of Data Spectral Regrowth from Nonlinear Amplification

  • Amoroso, Frank;Monzingo, Robert A.
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.81-85
    • /
    • 1999
  • The regrowth of OQPSK power spectral sidelobes from AM/AM and AM/PM amplifier nonlinearity is analyzed. The time-domain expression for amplifier output shows how spectral re-growth will depend on the cubic coefficient of the Taylor's series of the amplifier nonlinearity as well as input amplitude ripple. Closed form spectrum calculations show that the spectral sidelobes produced by AM/PM take the same form as those produced by AM/AM. The rate of growth of AM/PM sidelobes is, however, not as great as for AM/AM.

  • PDF