• 제목/요약/키워드: Nonlinear Ultrasonic

검색결과 99건 처리시간 0.023초

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei;Jang, Jinho;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.301-310
    • /
    • 2020
  • The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.

Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete

  • Kim, Gyu Jin;Park, Sun Jong;Kwak, Hyo Gyoung
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.121-129
    • /
    • 2016
  • As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

비선형 탄성계수를 이용한 재료변질 상태평가에대한 기초적 연구 (A Basic Research on Estimation of Material Condition by Using Nonlinear Elastic Modulus)

  • 김경조;장경영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.348-352
    • /
    • 1995
  • In the conventional linear elasticity, ultrasonic velocity is determined by elastic modulus and density of te medium which ultrasonic wave propagates through. But, practical ultrsonic wave depends on the stress acting in the medium, and as the stress increases such dependency becomes nonlinear. This nonlinear dependencyof ultrasonic velocity on stress can be identified by using nonlinear elastic modulus up to 4th order. In thid paper, with the above background relationships between nonlinear elastic modulus and the internalstatus of materials, normal, plastic deformed or heat stressed, are discussed. For this purpose, a new type of measuring system extended from the general nondestructive UT(ultrasonic test) equipment is constructed.

  • PDF

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

Development of Pressure Control System of Contact Transducer for Measurement of Ultrasonic Nonlinear Parameter

  • Lee, In-Ho;Son, Dae-Soo;Choi, Ik-Hwang;Lee, Tae-Hun;Jhang, Kyung-Young
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.576-581
    • /
    • 2007
  • Ultrasonic nonlinearity has been considered as a promising method to evaluate the micro damage of material; however, its magnitude is so small that its measurement is not easy. Especially, when we use contact PZT transducer, if the contacting pressure is not kept in constant during the measurement then there exists extraneous fluctuation in the measured nonlinearity caused by the unstable contact condition, In this paper, we developed a pneumatic control system to keep the contacting pressure of transducer in constant during the measurement and analyzed the effect of contacting pressure to the ultrasonic nonlinearity measurement As a result, we found that the pressure of transducer in our measurement system should be greater than 170 kPa to measure the ultrasonic nonlinear parameter in stable with no dependency on the contacting pressure.

음속의 응력의존성을 이용한 재료 상태평가에 대한 기초적 연구 (A Basic Research on Estimation of Material Condition by Using Stress Dependency of Sound Speed)

  • 김경조;장경영
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.53-60
    • /
    • 1996
  • In the conventional linear elasticity, sound speed is determined by only elastic modulus and density of the medium. In actual, however, sound speed depends on the stress and this dependency becomes nonlinear as the stress increases. These phenomena can be introducing nonlinear elastic modulus. In this paper, relationships between nonlinear elastic modulus up to 4th order and the internal status of materials are discussed through computer simulations and experiments. For the measurement of sound speed, a new type of measurement system using ultrasonic wave is proposed on the basis of ultrasonic pulse echo method which has been generally used in nondestructive ultrasonic test equipment. In order to confirm the stress dependency of sound speed, several experiments are carried out for alumina specimen.

  • PDF

Correlation between Ultrasonic Nonlinearity and Elastic Nonlinearity in Heat-Treated Aluminum Alloy

  • Kim, Jongbeom;Jhang, Kyung-Young
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.115-121
    • /
    • 2017
  • The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke's equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at $300^{\circ}C$ for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke's equation. The results showed that the variations in these parameters were in good agreement with each other.

초음파 비선형파라미터를 이용한 무산소동 저주기피로와 2.25Cr 페라이트강의 등온열화 평가 (Characterization of Low-cycle Fatigue of Copper and Isothermal Aging of 2.25Cr Ferritic Steel by Ultrasonic Nonlinearity Parameter)

  • 김정석
    • 열처리공학회지
    • /
    • 제35권5호
    • /
    • pp.239-245
    • /
    • 2022
  • The purpose of this study is to evaluate the degree of microstructural change of materials using ultrasonic nonlinear parameters. For microstructure change, isothermal heat-treated ferritic 2.25Cr steel and low-cycle fatigue-damage copper alloy were prepared. The variation in ultrasonic nonlinearity was analyzed and evaluated through changes in hardness, ductile-brittle transition temperature, electron microscopy, and X-ray diffraction tests. Ultrasonic nonlinearity of 2.25Cr steel increased rapidly during the first 1,000 hours of deterioration and then gradually increased thereafter. The variation in non-linear parameters was shown to be coarsening of carbides and an increase in the volume fraction of stable M6C carbides during heat treatment. Due to the low-cycle fatigue deformation of oxygen-free copper, the dislocation that causes lattice deformation developed in the material, distorting the propagating ultrasonic waves, and causing an increase in the ultrasonic nonlinear parameters.

비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가 (Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique)

  • 박선종;임홍재;곽효경
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.651-658
    • /
    • 2012
  • 이번 연구에서는 비선형 음향효과를 기반으로 한 비선형 초음파 변조 기법을 통해 열손상 콘크리트의 미세균열 정도를 평가할 수 있는 방법을 제안하였다. 화재 시 콘크리트 구조물은 물리적, 화학적 변화에 따른 콘크리트 내 미세균열이 발생하므로, 기존 초음파 비파괴 기법의 민감도 한계를 극복한 비파괴 기법의 도입이 필요하다. 비선형 초음파 기법은 초음파와 저주파의 변조파로부터 열손상 평가 인자인 비선형인자를 측정하며, 이는 열손상 콘크리트의 미세균열에 적합한 민감도를 가진다. 이 연구에서는 SEM 관측, 열손상 전후 콘크리트의 투수공극량 변화 측정으로부터 수열온도에 따라 미세균열이 급격하게 발생함을 보였으며, 수열온도별 콘크리트의 초음파 전파속도 측정을 통해 제안된 방법의 민감도를 검증하였다. 추가적으로 열손상에 따른 미세균열이 콘크리트의 성능저하에 미치는 영향을 파악하고자 열손상 콘크리트 시편의 압축강도 측정을 수행하였다. 측정값 및 실험값의 연관성을 파악하여 비선형 초음파 변조 기법이 열손상 콘크리트의 미세균열 평가에 적합함을 보였으며, 향후 압축강도 추정에 대한 적용 가능성을 확인하였다.