• Title/Summary/Keyword: Nonlinear Structural Analysis

Search Result 2,279, Processing Time 0.033 seconds

Seismic Fragility Analysis of RC Bridge Piers in Terms of Seismic Ductility (철근콘크리트 교각의 연성 능력에 따른 지진취약도)

  • Chung, Young-Soo;Park, Chang-Young;Park, Ji-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • Through lessons in recent earthquakes, the bridge engineering community recognizes the need for new seismic design methodologies based on the inelastic structural performance of RC bridge structures. This study represents results of performance-based fragility analysis of reinforced concrete (RC) bridge. Monte carlo simulation is performed to study nonlinear dynamic responses of RC bridge. Two-parameter log-normal distribution function is used to represent the fragility curves. These two-parameters, referred to as fragility parameters, are estimated by the traditional maximum likelihood procedure, which is treated each event of RC bridge pier damage as a realization of Bernoulli experiment. In order to formulate the fragility curves, five different damage states are described by two practical factors: the displacement and curvature ductility, which are mostly influencing on the seismic behavior of RC bridge piers. Five damage states are quantitatively assessed in terms of these seismic ductilities on the basis of numerous experimental results of RC bridge piers. Thereby, the performance-based fragility curves of RC bridge pier are provided in this paper. This approach can be used in constructing the fragility curves of various bridge structures and be applied to construct the seismic hazard map.

A Study on the Factors influencing Teachers' Intervention Efficacy for Helping Victims and Offenders of School Violence -Focused on Double Mediators by Using Nonlinear Analysis- (학교폭력 가해.피해학생을 위한 교사의 원조개입효능감에 영향을 주는 요인에 대한 연구 -비선형 분석을 이용한 다중매개검증을 중심으로-)

  • Shin, Sung-Ja
    • Korean Journal of Social Welfare
    • /
    • v.64 no.1
    • /
    • pp.79-100
    • /
    • 2012
  • The predominant concern of the study consist in: (1) the direct effect of social commitment on teachers' intervention efficacy for helping both victims and offenders in school violence situation; (2) the indirect effects of both teachers' perceptions of offenders and victims, and fairness of school regulations on teachers' intervention efficacy. Research is based on a survey conducted with 351 teachers(84 males and 267 females) from 10 middle schools located in different districts of the city of Daegu. In order for subjects to verify research questions, structural equation models in teachers' intervention efficacy for helping both victims and offenders were explored. In order to verify the difference between mediators' effect, along with total indirect effect and each individual mediator's effects, bias-corrected bootstrapping analysis by using Mplus were employed. The major findings of the study supported the significance on direct effect of social commitment, and indirect effect of both fairness of school regulations and teachers' perceptions toward offenders and victims, on teachers' intervention efficacy. However, the indirect effect of fairness of school regulations(.025) was far outweighed by teachers' perceptions(.224) toward offenders and victims. In conclusion, the above findings claim our attention in that they provide a range of practical implications for teachers and other related professionals including school workers who are engaged in helping out both victims and offenders in school violence situation.

  • PDF

Evaluation of Buckling Load and Specified Compression Strength of Welded Built-up H-section Compression Members with Residual Stresses (잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가)

  • Lee, Soo-Keuon;Yang, Jae-Guen;Kang, Ji-Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • Residual stress is defined as stress that already exists on a structural member from the effects of welding and plastic deformation before the application of loading. Due to such residual stress, welded H-section compression members under centroidal compression load can undergo buckling and failure for strength values smaller than the predicted buckling load and specified compressive strength. Therefore, this study was carried out to evaluate the effect of residual stress from welding on the determination of the buckling load and specified compressive strength of the H-section compression member according to the column length variation. A three-dimensional nonlinear finite element analysis was performed for the H-section compression member where the welded joint was fillet welded by applying heat inputs of 3.1kJ/mm and 3.6kJ/mm using the SAW welding method.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Seismic Performance of Reinforced Concrete Shear Wall Buildings with Piloti (필로티를 갖는 철근콘크리트 전단벽식 건물의 내진성능)

  • Kwon Young-Wung;Kim Min-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.587-594
    • /
    • 2005
  • The purpose of seismic design is to ensure the serviceability of buildings against earthquake, which might be occurred during the service life of buildings, and to minimize the loss of life by preventing their failure under strong earthquake. The lack resistance of walls resulting from a tendency toward high-rise apartment buildings with shear walls and use of piloti would lead to a concentration of inelastic behaviors in their weak story. In this study, the seismic performance of reinforced concrete shear wall buildings haying piloti was analyzed by using the evaluation techniques which was proposed by FEMA 273 and ATC-40. The results from comparison with these two techniques are summarized as follows.; The results of elastic analysis method for seismic performance evaluation show that the effect of piloti and building height decrease performance index. In case of shear wall building, the state of insufficient shear stress governs their overall performance and it becomes evident in the case of the buildings with more than 25 stories. For the buildings of piloti, the change of mass, weak story, as well as insufficient shear stress, decrease the performance index rapidly compared with the performance index of the buildings without piloti. The results, obtained from the nonlinear static analysis using capacity spectrum method, indicate that the performance Point increases for the structure having Piloti and high story. Also, deformation limits of buildings satisfy the allowable criteria at the life safety level, but the immediate occupancy level is exceeded in buildings which have more than 25 stories.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR (2D-QSAR방법을 이용한 농약류의 무지개 송어 급성 어독성 분석 및 예측)

  • Song, In-Sik;Cha, Ji-Young;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.544-555
    • /
    • 2011
  • The acute toxicity in the rainbow trout (Oncorhynchus mykiss) was analyzed and predicted using quantitative structure-activity relationships (QSAR). The aquatic toxicity, 96h $LC_{50}$ (median lethal concentration) of 275 organic pesticides, was obtained from EU-funded project DEMETRA. Prediction models were derived from 558 2D molecular descriptors, calculated in PreADMET. The linear (multiple linear regression) and nonlinear (support vector machine and artificial neural network) learning methods were optimized by taking into account the statistical parameters between the experimental and predicted p$LC_{50}$. After preprocessing, population based forward selection were used to select the best subsets of descriptors in the learning methods including 5-fold cross-validation procedure. The support vector machine model was used as the best model ($R^2_{CV}$=0.677, RMSECV=0.887, MSECV=0.674) and also correctly classified 87% for the training set according to EU regulation criteria. The MLR model could describe the structural characteristics of toxic chemicals and interaction with lipid membrane of fish. All the developed models were validated by 5 fold cross-validation and Y-scrambling test.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.

Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs (최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계)

  • Kim, Hyun-Ki;Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • The damage caused by Recent frequently occurring locality torrential rains is increasing rapidly. In case of densely populated metropolitan area, casualties and property damage is a serious due to landslides and debris flows and floods. Therefore, the importance of predictions about the torrential is increasing. Precipitation characteristic of the bad weather in Korea is divided into typhoons and torrential rains. This seems to vary depending on the duration and area. Rainfall is difficult to predict because regional precipitation is large volatility and nonlinear. In this paper, Very short-term precipitation forecasting pattern model is implemented using KLAPS data used by Korea Meteorological Administration. we designed very short term precipitation forecasting pattern model using GA-based RBFNNs. the structural and parametric values such as the number of Inputs, polynomial type,number of fcm cluster, and fuzzification coefficient are optimized by GA optimization algorithm.