• Title/Summary/Keyword: Nonlinear Stress-Strain Relation

Search Result 57, Processing Time 0.02 seconds

Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members (폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석)

  • 변근주;이상민;최홍식;노병철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • The objective of this study is to develop polymer-impregnated concrete(PIC), which is a newly developed composite material made by impregnating polymer impregnanls into hardened normal concrete, and to develop analytical techniques for its proper applications. Crystalline methyl methacrylate(MMA) is chosen as a monomer of polymer impregnants. The corrlpositions of polymer impregnants and producing processes are developed by analyzing the effects of penetration, polymerization, thermal safety, and strengthening characteristics. On t he basis of experimental results of this study, various strength characteristics and stress strain constitutive relations are formulated in terms of the compressive strength of normal concrete and the polymer loadings, which can be applied for analysis and design of PIC members. In order to provide a model for fracture analysis of flexural members, fracture toughness, fracture energy, critical crack width, and tension softening relations near crack tip are also formulated in terms of member depth, initial notch depth, and the flexural strength of normal concrete. The structural analysis procedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. The accuracy and effectiveness of the developed computer program is examined by comparing the anal ytical results with the experimental results. Therefore, it is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

Nonlinear Analysis of Nuclear Reinforced Concrete Containment Structures under Accidental Thermal Load and Pressure (온도 및 내압을 받는 원자로 철근콘크리트 격납구조물의 비선형해석)

  • Oh, Byung Hwan;Lee, Myung Gue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.403-414
    • /
    • 1994
  • Nonlinear analysis of RC containment structure under thermal load and pressure is presented to trace the behaviour after an assumed LOCA. The temperature distribution varying with time through the wall thickness is determined by transient finite element analysis with the two time level scheme in time domain. The layered shell finite elements are used to represent the containment structures in nuclear power plants. Both geometric and material nonlinearities are taken into account in the finite element formulation. The constitutive relation of concrete is modeled according to Drucker-Prager yield criteria in compression. Tension stiffening model is used to represent the tensile behaviour of concrete including bond effect. The reinforcing bars are modeled by smeared layer at the location of reinforcements accounting elasto-plastic axial behaviors. The steel liner model under Von Mises yield criteria is adopted to represent elastic-perfect plastic behaviour. Geometric nonlinearity is formulated to consider the large displacement effect. Thermal stress components are determined by the initial strain concept during each time step. The temperature differential between any two consecutive time steps is considered as a load incremental. The numerical results from this study reveal that nonlinear temperature gradient based on transient thermal analysis will produces excessive large displacement. Nonlinear behavior of containment structures up to ultimate stage can be traced reallistically. The present study allows more realistic analysis of concrete containment structures in nuclear power plants.

  • PDF

A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites (계면 결합력과 나노튜브의 응집에 따른 나노튜브/고분자 복합재의 탄소성 거동 예측에 대한 연구)

  • Yang, Seunghwa;Yu, Suyoung;Ryu, Junghyun;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.423-430
    • /
    • 2013
  • In this research, a paramteric study to account for the effect of interfacial strength and nanotube agglomeration on the elastoplastic behavior of carbon nanotube reinforced polypropylene composites is performed. At first, the elastoplastic behavior of nanocomposites is predicted from molecular dynamics(MD) simulations. By combining the MD simulation results with the nonlinear micromechanics model based on the Mori-Tanaka model, a two-step domain decomposition method is applied to inversely identify the elastoplastic behavior of adsorption interphase zone inside nanocomposites. In nonlinear micromechanics model, the secant moduli method combined with field fluctuation method is used to predict the elastoplastic behavior of nanocomposites. To account for the imperfect material interface between nanotube and matrix polymer, displacement discontinuity condition is applied to the micromechanics model. Using the elastoplastic behavior of the adsorption interphase zone obtained from the present study, stress-strain relation of nanocomposites at various interfacial bonding condition and local nanotube agglomeration is predicted from nonlinear micromechanics model with and without the adsorption interphase zone. As a result, it has been found that local nanotube agglomeration is the most important design factor to maximize reinforcing effect of nanotube in elastic and plastic behavior.

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF

Topology Design Optimization of Plate Buckling Problems Considering Buckling Performance (좌굴성능을 고려한 평판 좌굴문제의 위상설계최적화)

  • Lee, Seung-Wook;Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

The Suggestion of Nonlinear 4-Parameters Model for Predicting Creep Deformation of Concrete (콘크리트 크리프 변형 예측을 위한 비선형 4-매개변수 모델의 제안)

  • Lee, Chang Soo;Kim, Hyeon Kyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.45-54
    • /
    • 2006
  • To obtain realistic stress-strain relation in concrete, it is necessary to improve the constitutive model for creep and shrinkage of concrete. This study is made up with predicting model of creep using rheological approach and mathematical development which is solution for phenomenon of concrete creep. Long-term deformation components are combined based on traditional 4-parameters model. Creep deformation is obtained adequately using 4-parameters determined by considering aging effect and microprestress among gels. And coefficient of effective viscosity is able to represent both basic creep and total creep included drying creep. This study attempt to establish mathematical model considering effects of aging, hydration, and variations of pore humidity. It can predict both basic creep and total creep. Values of result between prediction and experiment have greater than correlation factor 99%. Additionally experimental results report bad consentaneity with highway design specification adopting FIB MC 90. Rather than those are similar to FIB MC 90 rev.99.