• 제목/요약/키워드: Nonlinear Finite Element Method

검색결과 1,292건 처리시간 0.032초

Finite Element Study of Ferroresonance in single-phase Transformers Considering Magnetic Hysteresis

  • Beyranvand, Morteza Mikhak;Rezaeealam, Behrooz
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.196-202
    • /
    • 2017
  • The occurrence of ferroresonance in electrical systems including nonlinear inductors such as transformers will bring a lot of malicious damages. The intense ferromagnetic saturation of the iron core is the most influential factor in ferroresonance that makes nonsinusoidal current and voltage. So the nonlinear behavior modeling of the magnetic core is the most important challenge in the study of ferroresonance. In this paper, the ferroresonance phenomenon is investigated in a single phase transformer using the finite element method and considering the hysteresis loop. Jiles-Atherton (JA) inverse vector model is used for modeling the hysteresis loop, which provides the accurate nonlinear model of the transformer core. The steady-state analysis of ferroresonance is done while considering different capacitors in series with the no-load transformer. The accurate results from copper losses and iron losses are extracted as the most important specifications of transformers. The validity of the simulation results is confirmed by the corresponding experimental measurements.

A Numerical Method for a High-Speed Ship with a Transom Stern

  • Kyoung Jo-Hyun;Bai Kwang-June
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.8-17
    • /
    • 2004
  • A numerical method is developed for computing the free surface flows around a transom stern of a ship at a high Froude number. At high speed, the flow may be detached from the flat transom stern. In the limit of the high Froude number, the problem becomes a planning problem. In the present study, we make the finite-element computations for a transom stern flows around a wedge-shaped floating ship. The numerical method is based on the Hamilton's principle. The problem is formulated as an initial value problem with nonlinear free surface conditions. In the numerical procedures, the domain was discretized into a set of finite elements and the numerical quadrature was used for the functional equation. The time integrations of the nonlinear free surface condition are made iteratively at each time step. A set of large algebraic equations is solved by GMRES(Generalized Minimal RESidual, Saad and Schultz 1986) method which is proven very efficient. The computed results are compared with previous numerical results obtained by others.

전산구조해석을 위한 기하학적 비선형 유한요소해석 예제 개발 (Development of Geometrically Nonlinear Finite Element Analysis Examples for Computational Structural Analysis)

  • 나원배;이선민
    • 수산해양교육연구
    • /
    • 제24권5호
    • /
    • pp.699-711
    • /
    • 2012
  • An undergraduate course named computational structural analysis becomes more significant in recent years because of its important role in industries and the recent innovation in computer technology. Typically, the course consists of introduction to finite element method, utilization of general purpose finite element software, and examples focusing on static and linear analyses on various structural members such as a beam, truss, frame, arch, and cable. However, in addition to the static and linear analyses, current industries ask graduates to acquire basic knowledge on structural dynamics and nonlinear analysis, which are not listed in the conventional syllabus of the computational structural analysis. Therefore, this study develops geometrically nonlinear examples, which can help students to easily capture the fundamental nonlinear theory, software manipulation, and problem solving skills. For the purpose, five different examples are found, developed for the analyses of cables and cable nets, which naturally have strong geometrical non-linearity. In the paper, these examples are presented, discussed, and finally compared for a better subject development.

타이어의 강성계수에 관한 고찰 (A Study on the Stiffness of Tire)

  • 이상선;반재삼;김항우;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

Finite element response sensitivity analysis of continuous steel-concrete composite girders

  • Zona, Alessandro;Barbato, Michele;Conte, Joel P.
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.183-202
    • /
    • 2006
  • The behavior of steel-concrete composite beams is strongly influenced by the type of shear connection between the steel beam and the concrete slab. For accurate analytical predictions, the structural model must account for the interlayer slip between these two components. This paper focuses on a procedure for response sensitivity analysis using state-of-the-art finite elements for composite beams with deformable shear connection. Monotonic and cyclic loading cases are considered. Realistic cyclic uniaxial constitutive laws are adopted for the steel and concrete materials as well as for the shear connection. The finite element response sensitivity analysis is performed according to the Direct Differentiation Method (DDM); its analytical derivation and computer implementation are validated through Forward Finite Difference (FFD) analysis. Sensitivity analysis results are used to gain insight into the effect and relative importance of the various material parameters in regards to the nonlinear monotonic and cyclic response of continuous composite beams, which are commonly used in bridge construction.

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • 제1권1호
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

인장 좌굴 현상을 수반하는 음의 포아송 효과를 가지는 구조물 해석을 위한 비선형 트러스 유한요소 모델 (A Nonlinear Truss Finite Element Model for Structures with Negative Poisson Effect Accompanied by Tensile Buckling)

  • 김태완;김준식
    • 한국전산구조공학회논문집
    • /
    • 제36권3호
    • /
    • pp.193-201
    • /
    • 2023
  • 본 논문에서는 인장 좌굴 현상을 소개하고 이를 이용한 음의 포아송 효과를 가지는 구조물에 대한 분석을 다룬다. 일반적으로 널리 알려진 좌굴은 압축하중 하에서의 안정성 문제임에 반하여, 인장 좌굴은 인장에 의해 국소적으로 압축력이 생겨 발생하는 좌굴이다. 고전적인 좌굴에 비하여 비교적 최근의 연구이기 때문에 상대적으로 잘 알려지지 않았다. 이에 인장 좌굴 현상을 에너지 관점에서 고찰하고, 해석을 위하여 비틀림 스프링을 가지는 비선형 트러스 유한요소의 정식화를 수행하였다. 비선형해석을 통해 후좌굴 거동을 분석하고 비틀림 스프링이 주요 인자임을 확인하였다. 이러한 후좌굴 거동은 음의 포아송 비를 가지는 구조물에 적용할 수 있으며, 기계적 스위치 등의 장치에 적용할 가능성을 보였다. 얻어진 결과들의 정확성 확인을 위하여 해석해와 상용 유한요소해석 결과들과 비교하여, 개발된 유한요소 모델이 기초 설계에 유용함을 보였다.

Nonlinear analysis of interaction between flexible pile group and soil

  • Liu, Jie;Li, Q.S.;Wu, Zhe
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.575-587
    • /
    • 2005
  • Using the nonlinear load transfer function for pile side soil and the linear load transfer function for pile end soil, a combined approach of the incremental load transfer matrix method and the approximate differential equation solution method is presented for the nonlinear analysis of interaction between flexible pile group and soil. The proposed method provides an effective approach for the solution of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To verify the accuracy of the proposed method, a static load test for a nine-pile group under a rigid platform is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the results from the proposed method match very well with those from the experimental test and are better in comparison with the finite element method.

A FINITE ELEMENT APPROXIMATION OF A FOURTH-ORDER NONLINEAR BOUNDARY VALUE PROBLEM

  • Lee, Hyun-Yong;Ohm, Mi-Ray;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.935-942
    • /
    • 2001
  • A finite element approximation of a fourth-order nonlinear boundary value problem is given. In the direct implementation, a nonlinear system will be obtained and also a full size matrix will be introduced when Newton’s method is adopted to solve the system. To avoid this difficulty we introduce an iterative scheme which can be shown to converge the positive solution of the system lying between 0 and $sin{\pi}x$.

압전체의 비선형 거동에 대한 유한요소 모델링 (Finite element modeling for nonlinear behavior of piezoelectric solids)

  • 김상주;곽문규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.435-440
    • /
    • 2001
  • Piezoelectric solids such as PZT and PLZT have been widely used as sensors and actuators for various smart systems. One of the problems arising in actuator applications is that a larger actuation force needs to be produced from a small system. This naturally leads to local electric field or stress concentration and thereby resulting in a nonlinear behavior inside the system, Hence, it becomes more important to predict the nonlinear behavior of piezoelectric solids. In this paper we investigate the mechanism of nonlinear behavior in those materials and suggest a constitutive and finite element model. The calculation results obtained from the model seem to be qualitatively consistent with experiments.

  • PDF