• Title/Summary/Keyword: Nonlinear Finite Element

Search Result 2,353, Processing Time 0.026 seconds

Condition Evaluation of the Pavement Foundations Using Multi-load Level FWD Deflections (다단계 하중 FWD를 사용한 도로기초 상태평가 연구)

  • Park, Hee-Mun;Kim, Richard Y.;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.261-271
    • /
    • 2003
  • A condition evaluation procedure for the pavement foundations using multi-load level Falling Weight Deflectometer(FWD) deflections is presented in this paper. A dynamic finite element program incorporating a stress-dependent material model, was used to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical responses, such as stresses and strains in base and subgrade layers, have been established. FWD deflection data, Dynamic Cone Penetrometer(UP) data, and repeated load resilient modulus testing results used in developing this procedure were collected from the Long Term Pavement Performance (LTPP) and North Carolina Department of Transportation (NCDOT) database. Research effort focused on investigation of the effect of the FWD load level on the condition evaluation procedures. The results indicate that the proposed procedure can estimate the pavement foundation conditions. It is also found that structurally adjusted Base Damage Index (BDI) and Base Curvature Index (BCI) are good indicators for the prediction of stiffness characteristics of aggregate base and subgrade respectively. A FWD test with a load of 66.7 kN or less does not improve the accuracy of this procedure. Results from the study for the nonlinear behavior of a pavement foundations indicate that the deflection ratio obtained from multi-load level deflections can predict the type and quality of the pavement foundation materials.

Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안)

  • Yang, Jae Guen;Lee, Hyung Dong;Kim, Yong Boem;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.423-433
    • /
    • 2015
  • A double split tee connection, which is a beam-column moment connection, shows different behavioral characteristics under the influences of the thickness of a T-stub flange, a high-strength bolt gauge distance, and the number and diameter of a high-strength bolt. A double split tee connection is idealized and designed that a flexural moment normally acting on connections can be resisted by a T-stub and a shear force by a shear tap. However, where a double split tee connection is adopted to a low-and medium-rise steel structure, a small-sized beam member can be adopted. Then, a shear tab may not be bolted to the web of a beam. This study was conducted to suggest the details of a connection to secure that a double split tee connection with a geometric shape has a sufficient capacity to resist a shear force. To verify this, this study was conducted to make a three-dimensional nonlinear finite element analysis on a double split tee connection.

A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account (용접잔류응력을 고려한 STS301L 플러그 및 링 용접부의 피로설계 자동화에 관한 연구)

  • Baek, Seung-Yeb;Yun, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1137-1143
    • /
    • 2010
  • This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude $(\sigma_a)_R$, which includes the welding residual stress in gas welds, is proposed $(\sigma_a)_R$ on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude $(\sigma_a)_R$ at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the $(\sigma_a)_R-N_f$ relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using $(\sigma_a)_R$.

Temperature-Induced Stresses and Deformation in Composite Box Girder Bridges (합성 박스형 교량의 온도에 의한 응력 및 변형)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.659-672
    • /
    • 1997
  • Thermal response induced from nonlinear temperature distribution in composite box gilder bridges depends on several variables(environmental conditions, physical and material properties, location and orientation of bridge, and cross-section geometry). In this paper, parametric study are conducted in order to find the effects of variations of seasons, location and orientation of bridge, sectional geometry and some material properties on the axial deformation, curvature and stresses in composite box girder bridge. A two-dimensional transient finite element model to conduct this parametric studies is briefly presented. Firstly, the effects of the parameters on the diurnal variation of curvature are considered, and for the time of maximum curvature, on the distribution of temperature and stresses of composite box girder sectional are considered. Finally, some considerations about the influence of the parameters on the daily maximum values of axial deformation, curvature and stresses are carried out. The influence of thermal effect on structures is important as much as the influence of live or dead load in some cases. In the design of steel composite bridges, the thermal stresses calculated on the supposition that the temperature difference between the concrete slab and steel girder is $10^{\circ}C$ and the temperature distributions are uniform in concrete slab and steel girder can be underestimated.

  • PDF

Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener (개량수평스티프너를 보강한 고강도강(HSA800) 접합부 내진성능평가)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.361-373
    • /
    • 2014
  • As the height and beam span of buildings built in the construction market increase, increasingly higher quality is being required of the construction materials. In response to this trend, 800MPa tensile strength class steel was developed in domestic company. Currently, experiments applying flexural member, compression member, and connections are continuously conducted, but a design guideline for high strength steel has yet to be established. Among those construction materials, for the high strength steel beam-to-column connections, the evaluation of implementing ductile connections for the high strength steel beam-to-column connections is producing pessimistic results and the number of related researches is inadequate because of the high yield ratio, which is the characteristic of high strength steel. This study on implementation of ductile connections made of high strength steel was conducted using the connection detail as the variable, for the purpose of enhancing the deformation capacity of high strength steel beam-to-column connections. Cyclic loading test and nonlinear finite element analysis were conducted with full-scale mock-up connection models with the applied connection details. As a result, the structural performance of high-strength steel beam-to-column connection with presented detail was contented with demand of Special Moment Frames of KBC standard.

Shear Behavior of Reinforced Concrete Beams according to Replacement Ratio of Recycled Coarse Aggregate (순환 굵은골재 치환율에 따른 철근콘크리트 보의 전단거동)

  • Kim, Sang-Woo;Jeong, Chan-Yu;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with recycled coarse aggregates. A total of six specimens with various replacement ratios of recycled coarse aggregates (0%, 50%, and 100%) and different amount of shear reinforcement were cast and tested in this study. A finite element analysis was performed to predict the shear behavior of the specimens with natural or recycled coarse aggregates. The FE analysis was performed using a two-dimensional nonlinear FE analysis program based on the disturbed stress field model (DSFM), which is an extension of the modified compression field theory (MCFT). Experimental results showed that the specimens with 50% and 100% replacement ratios of recycled coarse aggregates had the similar shear strength compared to the specimen with natural aggregates, regardless of the replacement ratios of recycled coarse aggregates and the amount of the shear reinforcement. Furthermore, the comparison between experimental and analytical results showed that the proposed numerical modeling methods and the analytical model, DSFM, can be successfully used to predict the shear behavior of reinforced concrete beams with recycled coarse aggregates.

The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside (해양플랜트 Topside 방화벽에 폭발압의 부압구간이 미치는 영향)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, Yong-Hee;Choi, Jae-Woong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • As a gas explosion is the most fatal accident in shipbuilding and offshore plant industries, all safety critical elements on the topside of offshore platforms should retain their integrity against blast pressure. Even though many efforts have been devoted to develop blast-resistant design methods in the offshore engineering field, there still remain several issues needed to be carefully investigated. From a procedure for calculation of explosion design pressure, impulse of a design pressure model having completely positive side only is determined by the absolute area of each obtained transient pressure response through the CFD analysis. The negative pressure phase in a general gas explosion, however, is often quite considerable unlike gaseous detonation or TNT explosion. The main objective of this study is to thoroughly examine the effect of the negative pressure phase on structural behavior. A blast wall for specific FPSO topside is selected to analyze structural response under the blast pressure. Because the blast wall is considered an essential structure for blast-resistant design. Pressure time history data were obtained by explosion simulations using FLACS, and the nonlinear transient finite element analyses were performed using LS-DYNA.

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Lightweight Design of an Outer Tie Rod Using Meta-Model Based Optimization Technique (메타모델기반최적화를 이용한 아우터타이로드의 경량화 설계)

  • Kim, Young-Jun;Park, Soon-Hyeong;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7754-7760
    • /
    • 2015
  • The outer tie rod is one of the part of steering system, the optimization process was executed to find the lightweight design. The inner tie rod was considered in the optimum design of an outer tie rod. it could be closer to the test condition than in the case of considering outer tie rod only. The aluminum forging material was considered as a weight reduction proposal. The target of optimization was the shape of the minimum weight to resist at the load of buckling. RSM and Kriging interpolation method were applied as a optimization method to consider the nonlinear shape optimization problem. Then, 16.3%, 16.6% of weight reduction was obtained from the result comparing with that of the initial model. The results of meta model optimization was compared with that of finite element method. The error values of buckling load estimation were 2.6%, 2.04%. and those of weight estimation were 0.17%, 0.13%. Therefore, it seemed that the result of Kriging model could be obtained closer to optimum value than that of RSM model.

The Development of Fixing Equipment of the Unit Module Using the Probability Distribution of Transporting Load (운반하중의 확률분포를 활용한 유닛모듈 운반용 고정장치 개발)

  • Park, Nam-Cheon;Kim, Seok;Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4267-4275
    • /
    • 2015
  • Prefabricated houses are fabricated at the factory for approximately 60 to 80% of the entire construction process, and assembled in the field. In the process of transporting and lifting, internal and external finishes of the unit module are concerned about damages. The purpose of this study is to improve the fixing equipment by analyzing load behavior. The improved fixing equipment would minimize the deformation of internal and external finishes. In order to develop the improved fixing equipment, transporting load on the fixing equipment is analyzed using Monte Carlo simulations, and structural performance is verified by the non-linear finite element analysis. Statistical analysis shows load distribution of unit module is similar with extreme value distribution. Based on the statistical analysis and Monte Carlo simulation, the maximum transporting load is 28.9kN and 95% confidence interval of transporting load is -1.22kN to 9.5kN. The nonlinear structural analysis shows improved fixing equipment is not destructed to the limit load of 35.3kN and withstands the load-bearing in the 95% confidence interval of transporting load.