• 제목/요약/키워드: Nonlinear FEA

검색결과 133건 처리시간 0.024초

Flux Linkage Estimation in a Switched Reluctance Motor Using a Simple Reluctance Circuit

  • Lee, Cheewoo
    • Journal of Magnetics
    • /
    • 제18권1호
    • /
    • pp.57-64
    • /
    • 2013
  • Flux linkage of phase windings is a key parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of flux linkage at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear saturation in flux. Although several different approaches using a finite element analysis (FEA) or a curve-fitting tool have been employed to compute phase flux linkage [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase flux linkage at aligned and unaligned rotor positions is estimated by means of a reluctance network, and the proposed approach is analytically verified in terms of accuracy compared to FEA.

반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 최적설계 (Optimum Design on Reduction of Torque Ripple for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology)

  • 박성준;이중호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권2호
    • /
    • pp.69-75
    • /
    • 2006
  • This paper deals with the optimum design solution on reduction of torque ripple for a Synchronous Reluctance Motor with concentrated winding using response surface methodology. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, open width of slot, slot depth, teeth width variation in concentrated winding SynRM, respectively. This paper presents an optimization procedure using Response Surface Methodology (RSM) to determine design parameters for reducing torque ripple. RSM has been achieved to use the experimental design method in combination with finite Element Method (FEM) and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

Robust Optimization with Static Analysis Assisted Technique for Design of Electric Machine

  • Lee, Jae-Gil;Jung, Hyun-Kyo;Woo, Dong-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2262-2267
    • /
    • 2018
  • In electric machine design, there is a large computation cost for finite element analyses (FEA) when analyzing nonlinear characteristics in the machine Therefore, for the optimal design of an electric machine, designers commonly use an optimization algorithm capable of excellent convergence performance. However, robustness consideration, as this factor can guarantee machine performances capabilities within design uncertainties such as the manufacturing tolerance or external perturbations, is essential during the machine design process. Moreover, additional FEA is required to search robust optimum. To address this issue, this paper proposes a computationally efficient robust optimization algorithm. To reduce the computational burden of the FEA, the proposed algorithm employs a useful technique which termed static analysis assisted technique (SAAT). The proposed method is verified via the effective robust optimal design of electric machine to reduce cogging torque at a reasonable computational cost.

원형PET용기와 사각PET용기의 압축하중시 변형거동에 관한 수치적 연구 (Numerical Study of the Deformation Characteristics for Circle Shaped and Square Shaped PET Bottles under Compressive Loads)

  • 조승현;권창오;박균명;고영배
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.5-9
    • /
    • 2014
  • Although much research has been conducted to reduce the thickness of PET bottles in order to save manufacturing costs, the challenge remains of guaranteeing mechanical strength for top-loaded thin PET bottles. The current study investigates the large deformation characteristics of a circle shaped PET bottle and a square shaped PET bottle when compressively loaded using FEA. The arc length method is used in the nonlinear FEA to understand the buckling phenomenon. For PET bottles with the same capacity, the circle shaped bottle shows more resistance to buckling and compression loading than the square shaped bottle.

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

지지점 간극을 갖는 다점지지 유연관의 유동하중에 의한 시간응답 이력해석과 상용유한요소 해석코드의 적용 (Flow-induced Vibration Time Response Analysis of Loosely Supported Multi-Span Tube using Commercial FEA Code)

  • 이강희;강흥석;신창환
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.68-74
    • /
    • 2015
  • Time domain response analysis for vibro-impact nonlinear behavior of multi-span tube with loose supports was performed using commercial FEA code and user subroutine. Support geometry of multi-span tube with a finite gap is realistically modeled by analytical rigid surface. Model of hydrodynamic force is based on the Qusai-steady model which accounts for the inclined angle of relative flow velocity and time delay between flow force and resulting tube motion. During tube vibration from flow loading, impact and friction at the support location is simulated using commercial FEA code with master slave contact algorithm. Analysis results has reasonable agreement with those of references and test experience. Plan of further refinement of analysis model and future test verification is briefly introduced.

유한요소 해석을 이용한 WUF-W 접합부 최적의 파단 예측 반응지표 선정 (Appropriate Response Index for Predicting Rupture in WUF-W Connections using FEA)

  • 한상환;김영우;김태오
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.205-213
    • /
    • 2017
  • The WUF-W moment connection is a pre-qualified connection that can be used for special moment frames specified in current seismic design specifications. Since the stress distribution near the connection varies according to access hole configuration, the cyclic performance of WUF-W connections is strongly affected by the access hole configurations. To evaluate the connection performance according to various access hole configurations, it is expensive to conduct experiments with many connection specimens. Instead, finite element analyses (FEA) can be performed. Throughout the FEA, stress and strain distribution in the connection can be monitored at each loading step. The purpose of this study is to construct nonlinear 3-dimensional FE models for accurately predicting the cyclic behavior of WUF-W connections. For predicting connection fracture using FEA, an appropriate response index detecting the incidence of connection rupture is proposed.

공항 콘크리트 포장 구조해석을 위한 3차원 유한요소 모형 개발 (Development of Three-Dimensional Finite Element Model for Structural Analysis of Airport Concrete Pavements)

  • 박해원;심차상;임진선;조남현;정진훈
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading. METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model. RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis. CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.

탄성-완전-소성 보강쉘 구조물의 설계민감도해석 (Design Sensitivity Analysis of Elasto-perfectly-plastic Structure for Stiffened Shell Structure)

  • 정재준;이태희;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.746-752
    • /
    • 2001
  • Design sensitivity analysis for nonlinear structural problems has been emerged in the last decade as a glowing area of engineering research. As a result, theoretical formulations and computational algorithms have already developed for design sensitivity of nonlinear structural problems. There is not enough research for practical nonlinear problems using multi-element, due to difficulties of implementation into FEA. Therefore, nonlinear response analysis for stiffened shell which consists of Mindlin plate and Timoshenko beam, was considered. Specially, it presents the backward-Euler method which is adopted to describe an exact yield state in the stress computation procedure. Then, design sensitivity analysis of nonlinear structures, particularly elasto-perfectly-plastic structure, is developed using direct differentiation method. The accuracy of the developed sensitivity analysis was compared with the central finite difference method. Finally, on the basis of above results, design improvement for stiffened shell is suggested.

  • PDF

Progressive Multi-Leaf Spring의 비선형 강성해석 법 (An Efficient Method for Calculating Nonlinear Stiffness of the Progressive Multi-Leaf Spring)

  • 김성수;문원규;유영일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.413-419
    • /
    • 2000
  • An efficient method for calculating the nonlinear stiffness of the Progressive Multi-Leaf Spring is developed and evaluated. It utilizes the interaction between the main and help spring that induces the nonlinearity. The main and the help springs are modeled as multi-leaf cantilever beams, and, then, they are integrated as one by connecting the two models for each side of the Progressive Multi-Leaf Spring at the center-bolt. The results from the developed model are evaluated by use of the commercial FEA program, ABAQUS. The nonlinear spring coefficients calculated by FEM analysis yield the numbers very close to the numbers calculated for the spring coefficients by used of the developed method. From the comparative evaluations, the developed method is accurate enough and very efficient in calculation time for evaluating the nonlinear spring property of the Progressive Multi-Leaf Spring.

  • PDF