• Title/Summary/Keyword: Nonlinear Design

Search Result 4,468, Processing Time 0.032 seconds

Theoretical Assessment of Flexural Strength of Unbonded FRP Prestressed Concrete Beams (비부착 FRP 프리스트레스트 콘크리트보의 휨내력 이론 산정)

  • Heo, Seo-Young;Lee, Cha-Don;Jeong, Sang-Mo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1045-1048
    • /
    • 2008
  • Fiber reinforced polymer (FRP) usually exhibits inherent brittleness under tensile stress. Application of FRP tendons to concrete beam leads to undesirable flexural behavior due to limited ductility compared to prestressed concrete beam with steel tendons. It has been experimentally observed that partial improvement of flexural behavior can be achieved by releasing FRP tendons' strain by unbonding FRP tendons. In order to estimate and apply the degree of improvement to the design, reasonable yet practical model predicting flexural strength as well as overall flexural behavior of unbonded FRP prestressed concrete beam is needed. In this study, an elaborated model in describing curvature distributions and flexural strength at ultimate stage of unbonded FRP tendons is described. There have been close agreements on the flexural strength of the FRP prestressed concrete beam between the predictions by nonlinear computer program and by the model.

  • PDF

A Study on P-M Interaction Diagram of Fire-Damaged High Strength Concrete Column (화재 피해를 입은 고강도 RC 기둥의 P-M 상관곡선에 관한 연구)

  • Kim, Hyun-Jung;Choi, Eun-Gyu;Shin, Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.257-260
    • /
    • 2008
  • This study will make P-M interaction diagram of residual capacity at fire-damaged High strength concrete column with polypropylene fiber. Evaluating capacity of column decreasing spalling with P-M interaction diagram is important. because high strength concrete column with polypropylene fiber isn't section area loss. P-M interaction diagram that is made to analyze according to a various parameters is useful index for design and evaluating capacity of columns. In this study, spalling, temperature distribution of interior column, residual strength and movement of column in eccentric loading are studied with expose time of high temperature. For study fire test that is similar real act, and after cooling in normal condition residual strength of specimen is estimated. And this study use DIANA(Displacement Analyzer) for analyzing nonlinear analysis. with experiment temperature and strength data.

  • PDF

Adaptive self-structuring fuzzy controller of wind energy conversion systems (풍력 발전 계통의 자기 구조화 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • This paper proposes an online adaptive fuzzy controller for a wind energy conversion system (WECS) that is intrinsically highly nonlinear plant. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and off-line implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing fuzzy system in the controller design in this paper. The proposed adaptive fuzzy control scheme using self-structuring algorithm requires no system parameters to meet control objectives. Even the structure of the fuzzy system is automatically grows on-line, which distinguishes our proposed algorithm over the previously proposed fuzzy control schemes. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.

Characteristics of Wave Trasnformation in Gamcheon Harbor (감천항내의 파랑변형 특성)

  • 김재중;김기철;이정만
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.399-408
    • /
    • 1999
  • Copeland’s(1985) hyperbolic mild-slope equation including diffraction refraction and reflection in the wave field is used as a governing equation in this study. The result of Maruyama & Kajima(1985) is used to calculate wave direction and that of Watanabe & Maruyama(1986) is used as a energy dissipation formula. Numerical solutions are obtained by the Leap-Frog scheme and compared with Watanabe & Maruyama’s (1984) hydraulic experimental results and numerical simulation results for the detached breakwater. This wave model is applied to a detached breakwater and compared with Watanabe and Maruyama’s (1984) hydraulic model results to check the characteristics of reflected wave field around a detached breakwater. The distribution of wave height and we phase in front of a detached breakwater is more accurate than the Watanabe and Maruyama’s numerical results. The results from our wave model show good agreements with the others and also show nonlinear effects around the detached breakwater. This model is applied to the Gamcheon harbor of pusan. the field observations were carried out at Pusan harbor wave station in 1986-1995 and the results were accepted as a design wave condition in this study. The wave height and wave period was measured by Dong-A university at one station in the Gamcheon harbor in 1996-1997 and used as a calibration criterion. The measured data were used as input data for the numerical simulation and also compared with simulated results. The numerical simulation shows a fairly good results which considering the effect of topographic characteristics and effect of narrow entrance due to two separated breakwaters in Gamcheon harbor. The wave distribution characteristics inside Gamcheon harbor is quite different with the offshore wave direction and wave period.

  • PDF

A Study on the Robust Stability and Stabilization Problem for Marine Vessel (수상 및 수중 운동체의 강인 안정성 해석 및 안정화에 관한 연구)

  • Kim, Young-Bok;Cho, Kwang-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2012
  • In this paper, the stability and stabilization problems for marine vessels including surface and underwater vehicles are described. In the marine vessels, there are many and strong nonlinear parameters. These give hard design process and difficulties to us. In this article, at first we make a descriptor system representation as a controlled system to preserve the physical parameters of the system as it is. And we propose a new stability and stabilizability conditions based on the quadratic stabilization approach which gives a solution for the unreasonable problems produced by added mass. That is, the proposed conditions are not interfered with the nonsymmetric matrix constraint. And the stability condition is given by an matrix inequality such that it makes us to obtain a solution easily for something.

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

Left right discrimination performance improvement for the line array sonar system (선 배열 소나 시스템을 위한 좌 우 구분 성능 개선 기법)

  • Lee, Ho-Jun;Ahn, Jong-Min;Seo, Jong-Pill;Ahn, Jae-Kyun;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • This paper proposes a method to improve the left right discrimination performance by eliminating the imaginary target based on the frequency features of the beam pattern for bow array. The beamwidth of the imaginary target is wider than that of the real target. If an azimuth axis is considered as a time axis, the real and the imaginary targets can be assumed as high and low frequencies, respectively. To eliminate the imaginary target which has a low frequency component, we design a cut-off frequency of the High Pass Filter (HPF) using the back-lobe imaginary beamwidth. The real target is estimated by eliminating the imaginary target by applying HPF to the entire power of the beamformer output. Computer simulations show that the proposed method can increase the left right discrimination performance above 8 dB on average.

Capacity Spectrum Analysis using Equivalent SDOF Method and Equivalent Damping Method for RC Wall Structure (철근콘크리트 벽체구조물에 대한 등가단자유도 방법 및 등가 감쇠비 산정방법에 따른 역량스펙트럼해석)

  • Song, Jong-Keol;Jang, Dong-Hui;Kim, Hark-Soo;Chung, Yeong-Hwa
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.169-187
    • /
    • 2008
  • Performance-based approaches as an alternative method of the existing force-based approach have gradually become recognized tools for the seismic design and evaluation. The maximum inelastic displacement response using capacity spectrum method (CSM) with elastic response spectrum is estimated from seismic response of equivalent linear system converted from nonlinear system. The purpose of this paper is to evaluate accuracy of capacity spectrum method using the equivalent SDOF methods of 4 types and the equivalent damping methods of 5 types for RC wall structure. In order to evaluate accuracy of capacity spectrum analysis, the shaking table test results for RC wall structures are compared with those by the capacity spectrum analysis. Also, the effect of bilinear capacity curves by two bilinear approximation methods for capacity spectrum analysis is compared.

High-precision modeling of uplift capacity of suction caissons using a hybrid computational method

  • Alavi, Amir Hossein;Gandomi, Amir Hossein;Mousavi, Mehdi;Mollahasani, Ali
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-280
    • /
    • 2010
  • A new prediction model is derived for the uplift capacity of suction caissons using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA. The predictor variables included in the analysis are the aspect ratio of caisson, shear strength of clayey soil, load point of application, load inclination angle, soil permeability, and loading rate. The proposed model is developed based on well established and widely dispersed experimental results gathered from the literature. To verify the applicability of the proposed model, it is employed to estimate the uplift capacity of parts of the test results that are not included in the modeling process. Traditional GP and multiple regression analyses are performed to benchmark the derived model. The external validation of the GP/SA and GP models was further verified using several statistical criteria recommended by researchers. Contributions of the parameters affecting the uplift capacity are evaluated through a sensitivity analysis. A subsequent parametric analysis is carried out and the obtained trends are confirmed with some previous studies. Based on the results, the GP/SA-based solution is effectively capable of estimating the horizontal, vertical and inclined uplift capacity of suction caissons. Furthermore, the GP/SA model provides a better prediction performance than the GP, regression and different models found in the literature. The proposed simplified formulation can reliably be employed for the pre-design of suction caissons. It may be also used as a quick check on solutions developed by more time consuming and in-depth deterministic analyses.

Ultimate Strength varying the Yield Stress of a Ship's Plate (선체판의 항복응력 변화에 따른 최종강도거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.179-183
    • /
    • 2005
  • The High-tensile steel has been recognized as a promising concept for structural design of light weight transportation systems such as aircraft high speed trains and fast ships. Using the high-tensile steel has been widely used in ship structures, and this enables to reduce the plate thickness. Using the high-tensile steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behavior of plate above primary buckling load is important. In this study, examined closely secondary buckling behavior after initial buckling of thin plate structure which operated compressive load according to the various kinds of yield stress with simply supported boundary condition. Analysis method is F.E.M by commercial program(ANSYS V7.1) and complicated nonlinear behaviour can analyze using art-length method about secondary buckling.

  • PDF