• 제목/요약/키워드: Nonlinear Control Law

검색결과 417건 처리시간 0.026초

수직다관절 매니퓰레이터에 대한 비선형 되먹임제어의 응용 (Application of Nonlinear Feedback Control to an Articulated Manipulator)

  • Y.S. Baek;C.I. Yang;H.S. Aum
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.104-114
    • /
    • 1995
  • Mathematical models of industrial robots or manipulators are composed of highly nonlinear equations with nonlinear couplings between the variables of motions. These nonlin- earities were not considered important in the first stage that the working speed of the manipulator was not so fast, but the effect of nonlinear forces has become serious, as the working speed has been increased. So more improvement of performance cannot be expected by the control of manipulator using approximate linearization. As an approach for solving these problems, there is a method that eliminates nonlinear theory, which makes possible cecoupling of coupling terms and arbitrary arranging of poles is briefly introduced in this study. When the theory is applied to design the control law, its feasibility is examined whether the reasonable control results are obtained by simulating position, velocity, torque and tracing trajectory. The relations between the coefficients of the linearized differential equations and the maximum error and torque for the prescribed trajectory are also examined. Finally, the method for selecting the values for getting the most rapid and precise response within maximum torque of each drive is suggested in the choice of coefficients of characteristic equations which are obtained as a result of the control.

  • PDF

$H_{\infty}$ Composite Control for Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Kim, Beom-Soo;Shin, Eun-Chul;Yoo, Ji-Yoon;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.407-412
    • /
    • 2004
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of singularly perturbed nonlinear systems with a exogenous disturbance, using the successive Galerkin approximation(SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale via singular perturbation theory, and two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

  • PDF

차량 능동 현가장치 용 수압 액추에이터에 대한 비선형 제어 (Nonlinear Control of a Hydraulic Actuator for Vehicle Active Suspensions)

  • 천종민;김석주;이종무;김춘경;권순만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2534-2536
    • /
    • 2005
  • In this paper, we apply sliding control law to a nonlinear electro-hydraulic suspension system. The force the actuator must track is determined by the skyhook control law and the desired force value varies according to the road situation. The road frequencies can inform us of the current road situation. Detecting the road frequencies, we use the Fourier Transform.

  • PDF

단거리 지대공 유도무기에서의 순비례항법 유도법칙과 진비례항법 유도법칙의 성능비교 (Performance Comparison between True Proportional Navigation Guidance Law and Pure Proportional Navigation Guidance Law)

  • 유의환;전칠환;이연석
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.525-530
    • /
    • 2007
  • In this paper, a performance comparison between traditional TPN (true proportional navigation) guidance law and PPN(pure proportional navigation) guidance law is made, based on a short range surface-to-air missile simulation program. This simulation program has a nonlinear aerodynamic missile model, a roll stabilized autopilot, a nonlinear radar model, and a target model, According to the simulation results, the PPN guidance law has better performances than TPN guidance law under the condition of evasive target.

Nonlinear Attitude Control for a Rigid Spacecraft by Feedback Linearization

  • Hyochoong Bang;Lee, Jung-Shin;Eun, Youn-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.203-210
    • /
    • 2004
  • Attitude control law design for spacecraft large angle maneuvers is investigated in this paper. The feedback linearization technique is applied to the design of a nonlinear tracking control law. The output function to be tracked is the quaternion attitude parameter. The designed control law turns out to be a combination of attitude and attitude rate tracking commands. The attitude-only output function, therefore, leads to a stable closed-loop system following the given reference trajectory. The principal advantage of the proposed method is that it is relatively easy to produce reference trajectories and associated controller.

목적함수를 고려한 이산 비선형 시스템의 반복 학습 제어 (Iterative Learning Control for Discrete Time Nonlinear Systems Based on an Objective Function)

  • 정구민;최종호;장태정
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1147-1154
    • /
    • 2001
  • In this paper, a new iterative learning control scheme for discrete time nonlinear systems is proposed based on an objective function consisting of the output error and input energy. The relationships between the proposed ILC and the optimal control are described. A new input update law is proposed and its convergence is proved under certain conditions. In this proposed update law, the inputs in the whole control horizon are updated at once considered as one large vector. Some illustrative examples are given to show the effectiveness of the proposed method.

  • PDF

신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어 (Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping)

  • 이태영;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Synthesis of Nonlinear Model Matching Flight Control System for Tilt Rotor Aircraft

  • Asada, Yasuhiro;Osa, Yasuhiro;Uchikado, Shigeru;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.979-984
    • /
    • 2005
  • In this study, we suggest a tilt rotor aircraft and attempt to apply a nonlinear model matching control method for its maneuver. The proposed method is very simple and useful to construct the control law for the complicated nonlinear system such as aircraft motion.

  • PDF

강인 적응 비선형 제어 설계 (A Robust Adaptive Nonlinear Control Design)

  • 김동헌;김응석;현근호;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.703-705
    • /
    • 2000
  • In this paper, we design a robust adaptive controller for a nonlinear systems with uncertainties to be rejected via disturbance adaptation law. The nonlinear system considered in this paper has unknown nonlinear functions being influenced by external disturbance. The upper bounds of unknown nonlinear functions at each time is estimated by using disturbance adaptation law. The estimated nonlinear functions are used to design stabilizing function and control of input. Tuning function is used to estimate unknown system parameter without overparametrization. A set-point regulation error converges to a residual set close to zero asymptotically fast.

  • PDF

Robust Adaptive Control for a Class of Nonlinear Systems with Complex Uncertainties

  • Seo, Sang-Bo;Back, Ju-Hoon;Shim, Hyung-Bo;Seo, Jin-H.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.292-300
    • /
    • 2009
  • This paper considers a robust adaptive stabilization problem for a class of uncertain nonlinear systems which include an unknown virtual control coefficient, an unknown constant parameter, and a time-varying disturbance whose bound is unknown, We propose a new estimator for an un-known virtual control coefficient and present a robust adaptive backstepping design procedure which results in a smooth state feedback control law, a new two-dimensional parameter update law, and a $C^1$ Lyapunov function which is positive definite and proper.