• 제목/요약/키워드: Nonlinear Aerodynamic Characteristics

검색결과 54건 처리시간 0.025초

가변속도-가변피치 풍력터빈의 공기역학적 토크의 비선형 특성에 관한 고찰 (An Investigation on Nonlinear Characteristics of Aerodynamic Torque for Variable-Speed Variable-Pitch Wind Turbine)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.29-34
    • /
    • 2011
  • Aerodynamic torque of wind turbine is highly nonlinear due to the nonlinear interactions between wind and blade. The aerodynamic nonlinearity is represented by nonlinear power and torque coefficients which are functions of wind speed, rotational speed of rotor, and pitch angle of blade. It is essential from the viewpoint of understanding and analysis of dynamic characteristics for wind turbine to linearize the aerodynamic torque and define aerodynamic nonlinear parameters as derivatives of aerodynamic torque with respect to the three parameters. In this paper, a linearization method of the aerodynamic torque from power coefficient is presented through differentiating it by the three parameters. And steady-state values of three aerodynamic nonlinear parameters according to wind speed are obtained and their nonlinear characteristics are investigated.

풍력터빈의 피치 PI 제어기 특성 고찰 (Study on Properties of Pitch Control for Wind Turbine)

  • 임채욱
    • 대한기계학회논문집A
    • /
    • 제35권1호
    • /
    • pp.59-65
    • /
    • 2011
  • 블레이드와 바람의 상호작용에 의해 발생하는 풍력터빈의 공기역학적 토크와 파워의 특성은 매우 비선형적이다. 그러므로 풍력터빈의 전체 동적 거동은 풍속의 크기에 따라서 비선형적인 특성을 가진다. 공기역학적 비선형성은 또한 풍력터빈 제어시스템의 특성에 영향을 미치므로, 풍력터빈 제어기를 설계하기 위해서는 비선형적인 공기역학적 특성들에 대한 해석을 통한 고찰이 필연적이다. 본 논문에서는 정격파워 이상에서 풍속 크기에 따른 비선형적인 공기역학적 특성들과 이 비선형성들이 PI 제어기를 가지는 폐루프 피치계에 미치는 영향들을 1-질량 모델의 풍력터빈에 대하여 살펴본다.

풍력터빈 토크제어의 특성 고찰 (A Study on Properties of Torque Control for Wind Turbine)

  • 임채욱
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1157-1162
    • /
    • 2009
  • The aerodynamic torque and power caused by the interaction between the wind and blade of wind turbine are highly nonlinear. For this reason, the overall dynamic behaviors of wind turbine have nonlinear characteristics. The aerodynamic nonlinearity also affects properties of torque control for wind turbine. In this paper, the nonlinear aerodynamic property according to the wind speed below rated power and its effects on the torque control system are investigated. Nonlinear parameter representing change of aerodynamic torque with respect to rotor speed is obtained by linearization technique. Effects of this aerodynamic nonlinear parameter on the closed-loop torque system with PI controller for an 1.5 MW wind turbine are presented.

반복적 캠버변형 기법을 이용한 조종면이 있는 날개의 비선형 공력특성 해석 (Nonlinear Aerodynamic Analysis of Wing with Control Surface Using an Iterative Decambering Approach)

  • 조정현;정용인;조진수
    • 한국항공우주학회지
    • /
    • 제35권5호
    • /
    • pp.375-380
    • /
    • 2007
  • 연구에서는 주파수 영역 패널법을 이용하여 조종면이 있는 날개의 비선형 공력특성을 해석하였다. 날개의 비선형 공력특성을 해석하기 위해 반복적 캠버변형 기법을 도입하였다. 캠버변형 기법은 기지의 에어포일 공력특성을 이용하여 날개의 비선형 공력특성을 해석한다. 날개의 한 단면에서의 에어포일 캠버변형이 날개의 다른 단면에 미치는 영향은 다차원 뉴턴 반복법을 사용하여 고려하였다. 해석결과를 실험값과 비교하여 본 방법의 유효함을 보였다. 본 방법은 많은 계산 자원을 요하지 않으면서 신속하게 날개의 비선형 공력특성을 예측할 수 있어 항공기 설계 초기 단계에서 유용할 것으로 생각된다.

구조 비전형성 및 충격파 간섭효과를 고려한 미사일 날개의 천음속 유체유발 진동특성 (Characteristics of Transonic Flow-Induced Vibration for a Missile Wing Considering Structural Nonlinearity and Shock Inference Effects)

  • 김동현;이인;김승호;김태연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.914-920
    • /
    • 2002
  • Nonlinear flow-induced vibration characteristics of a generic missile wing (or control surface) are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are considered in the transonic flow region. To practically consider the effects of freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on a finite element method (FEM). A computational fluid dynamics (CFD) technique is used for computing the nonlinear unsteady aerodynamics of all-movable wings. The aerodynamic analysis is based on the efficient transonic small-disturbance aerodynamic equations of motion using the potential-flow theory. To solve the nonlinear aeroelastic governing equations including the freeplay effect, a modal-based computational structural dynamic (CSD) analysis technique based on fictitious mass method (FMM) is used in time-domain. In addition, CSD and unsteady CFD techniques are simultaneously coupled to give accurate computational results. Various aeroelastic computations have been performed for a generic missile wing model. Linear and nonlinear aeroelastic computations have been conducted and the characteristics of flow-induced vibration are introduced.

  • PDF

반구형 공기동압베어링의 정적 특성 및 설계 (Static Characteristics and Design of Hemispherical Aerodynamic Bearing)

  • 김승곤;김준영;최환영
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.217-224
    • /
    • 1997
  • Static characteristics of hemispherical aerodynamic bearing is studied theoretically. In this paper nonlinear equation of second order considering compressibility and slip effect of air is calculated by Newton-Raphson method. Results indicate that axial load capacity has maximum value when the inclination angle of groove is about 30$\circ$, the ratio of groove clearance to ridge clearance is two. We also present the design method of hemispherical Aerodynamic bearing based on it's load capacity taking into account manufacturing and assembling viewpoint.

  • PDF

Design of Neural Network Adaptive Control Law for Aircraft System Including Uncertainty

  • Kim, You-Dan;Shin, Dong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.125.3-125
    • /
    • 2001
  • Recently, aircraft is designed to have high maneuverable at high angle of attack. However, it is very hard to obtain the accurate dynamic model for the high performance, because aerodynamic characteristics are nonlinear and include a lot of uncertainties. Therefore, nonlinear controller without considering uncertainties may degrade the control system performance. On this paper, to overcome these defects, the neural networks based adaptive nonlinear controller is proposed making use of the backstepping technique. Neural networks are implemented to guarantee robustness to uncertainties caused by aerodynamic coefficients variation. The main feature of the proposed controller is that the adaptive controller is developed under the assumption ...

  • PDF

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • 제14권3호
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude

  • Zheng, Zhoulian;Xu, Yunping;Liu, Changjiang;He, Xiaoting;Song, Weiju
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.401-413
    • /
    • 2011
  • The aerodynamic stability of orthotropic tensioned membrane structures with rectangular plane is theoretically studied under the uniform ideal potential flow. The aerodynamic force acting on the membrane surface is determined by the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics. Then, based on the large amplitude theory and the D'Alembert's principle, the interaction governing equation of wind-structure is established. Under the circumstances of single mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction equation into a system of second order nonlinear differential equation with constant coefficients. Through judging the stability of the system characteristic equation, the critical divergence instability wind velocity is determined. Finally, from different parametric analysis, we can conclude that it has positive significance to consider the characteristics of orthotropic and large amplitude for preventing the instability destruction of structures.