• Title/Summary/Keyword: Nonequilibrium Condensation Passive Control

Search Result 7, Processing Time 0.022 seconds

A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(I) (응축충격파와 경계층 간섭의 피동제어(I))

  • Choe, Yeong-Sang;Jeong, Yeong-Jun;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.316-328
    • /
    • 1997
  • There were appreciable progresses on the study of shock wave / boundary layer interaction control in the transonic flow without nonequilibrium condensation. But in general, the actual flows associated with those of the airfoil of high speed flight body, the cascade of steam turbine and so on accompany the nonequilibrium condensation, and under a certain circumstance condensation shock wave occurs. Condensation shock wave / boundary layer interaction control is quite different from that of case without condensation, because the droplets generated by the result of nonequilibrium condensation may clog the holes of the porous wall for passive control and the flow interaction mechanism between the droplets and the porous system is concerned in the flow with nonequilibrium condensation. In these connections, it is necessary to study the condensation shock wave / boundary layer interaction control by passive cavity in the flow accompanying nonequilibrium condensation with condensation shock wave. In the present study, experiments were made on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of the porosity, the porous wall area and the depth of cavity on the pressure distribution around condensation shock wave. It was found that the porosity of 12% which was larger than the case of without nonequilibrium condensation produced the largest reduction of pressure fluctuations in the vicinity of condensation shock wave. The results also showed that wider porous area, deeper cavity for the same porosity of 12% are more favourable "passive" effect than the cases of its opposite. opposite.

A Passive Control of Interaction of Condensation Shock Wave anc Boundary Layer(II) (응축충격파와 경계층 간섭의 피동제어(II))

  • Choe, Yeong-Sang;Gwon, Sun-Beom;Kim, Byeong-Ji
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.329-340
    • /
    • 1997
  • A passive control of interaction of condensation shock wave / boundary layer for reducing the strength of condensation shock was conducted experimentally in a 2.5 * 8 cm$^{2}$ indraft type supersonic wind tunnel. The effects of following factors on passive control were investigated: 1) the thickness of porous wall, 2) the diameter of porous hole, and 3) the orientation of porous hole. On the other hand, the location of nonequilibrium condensation region and condensation shock wave was controlled by regulation of the stagnation conditions. Surface static pressure measurements as well as Schlieren observations of the flow field were obtained, and their effects were compared with the results the cases of without passive control. It was found that thinner porous wall, smaller porous hole and FFH orientation for the same cavity size and porosity of 12% are more favourable than the cases of its opposite.

Passive control of condensation shock wave in supersonic nozzles (초음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Gwon, Sun-Beom;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.

Passive Control of the Condensation Shock Wave Using Bleed Slots

  • Kim, H.D.;Lee, K.H.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.299-304
    • /
    • 2001
  • The current study describes experimental and computational work on the passive control of the steady and unsteady condensation shock waves, which are generated in a transonic nozzle. The bleed slots are installed on the contoured wall of the transonic nozzle in order to control the magnitude of the condensation shock wave and its oscillations. For computations, a droplet growth equation is incorporated into the two-dimensional Navier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order tractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. An experiment using an indraft transonic wind tunnel is made to validate the computational results. The current computations represented well the experimental flows. From both the experimental and computational results it is found that the magnitude of the condensation shock wave in the bleed slotted nozzle is significantly reduced, compared with no passive control of solid wall. The oscillations of the condensation shock wave are successfully suppressed by a bleed slot system.

  • PDF

Passive Control of Condensation Shock Wave in a Transonic Nozzle (천음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Baek, Seung-Cheol;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.666-674
    • /
    • 2002
  • A rapid expansion of the moist air or stream through transonic nozzle often leads to not-equilibrium condensation shock, causing a considerable amount of energy loss to the entire flow field. Depending on amount of heat released, condensation shock wave occurs in the nozzle and interacts with the boundary layer flow. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for purpose of alleviation the condensation shock wave in a transonic nozzle. A droplet growth equation is incorporated into two-dimensional wavier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft transonic wind tunnel is made to validate the present computational results. The results obtained show that the magnitude of condensation shock wave is reduced by the current passive control method.

A Study of the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (천음속 습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek Seung-Cheol;Kwon Soon-Bum;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.161-164
    • /
    • 2002
  • In the present study, a passive control method, using the porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwind-Lomax turbulence model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure losses of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil, as well. It is also found that the location of the porous ventilation significantly influences the control effectiveness.

  • PDF

Study on the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.21-29
    • /
    • 2002
  • In the present study, a passive control method, using a porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible, Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwin-Lomax model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure loss of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock wave/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil as well. It is also found that the location of the porous ventilation significantly affects the control effectiveness.