• Title/Summary/Keyword: Noncontact Thermography

Search Result 3, Processing Time 0.02 seconds

Noncontact techniques for monitoring of tunnel linings

  • White, Joshua;Hurlebaus, Stefan;Shokouhi, Parisa;Wittwer, Andreas;Wimsatt, Andrew
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.197-211
    • /
    • 2014
  • An investigation of tunnel linings is performed at two tunnels in the US using complimentary noncontact techniques: air-coupled ground penetrating radar (GPR), and a vehicle-mounted scanning system (SPACETEC) that combines laser, visual, and infrared thermography scanning methods. This paper shows that a combination of such techniques can maximize inspection coverage in a comprehensive and efficient manner. Since ground-truth is typically not available in public tunnel field evaluations, the noncontact techniques used are compared with two reliable in-depth contact nondestructive testing methods: ground-coupled GPR and ultrasonic tomography. The noncontact techniques are used to identify and locate the reinforcement mesh, structural steel ribs, internal layer interfaces, shallow delamination, and tile debonding. It is shown that this combination of methods can be used synergistically to provide tunnel owners with a comprehensive and efficient approach for monitoring tunnel lining conditions.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

Laser Lock-in Thermal Wave Imaging for Nondestructive Evaluation

  • An, Yun-Kyu;Sohn, Hoon;Kim, Ji Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.317-322
    • /
    • 2013
  • This paper presents a new laser lock-in thermography (LLT) technique for nondestructive evaluation. LLT utilizes a modulated continuous wave laser beam as a heat source to obtain high fidelity thermal wave images even at the presence of background heat disturbances. The thermal waves propagating along the surface and through-the-thickness directions of a structure are visualized using newly developed laser lock-in amplitude and phase images, enhancing the detectability of surface and subsurface defects. The LLT technique is numerically investigated and experimentally validated using thermal images obtained from a steel specimen with low emissivity.