• 제목/요약/키워드: Noncollocated system

검색결과 9건 처리시간 0.023초

$H_2$ 제어기를 이용한 외팔보의 능동 진동 제어 (Active Vibration Control of A Cantilever Beam Using $H_2$ Controllers)

  • 최수영;정준홍;박기헌
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권7호
    • /
    • pp.401-409
    • /
    • 2003
  • This paper describes the design and the performance analysis of an $H_2$ controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability. The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

H₂제어기를 이용한 외팔보의 능동 진동 제어 (Active Vibration Control of A Cantilever Beam Using Ha Controllers)

  • 최수영;정준홍;박기헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권7호
    • /
    • pp.401-401
    • /
    • 2003
  • This paper describes the design and the performance analysis of an Ha controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability, The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

탄성-질량시스템의 위치제어를 위한 강건 제어기 설계 (A Robust Controller Design for the Position Control of a Spring-Mass System)

  • 박종우;이상철
    • 전자공학회논문지T
    • /
    • 제36T권3호
    • /
    • pp.41-49
    • /
    • 1999
  • 본 논문에서는 μ-합성법으로 제어기를 설계하여 센서와 구동부가 동일위치에 있지 않은(noncollocated) 탄성-질량 시스템에 적용한다. 스프링 상수값과 제어대상의 부하 질량은 불확실하다고 가정한다 매개변수 불확실성을 포함하고 있는 제어대상은 상태 공간 방정식, 특히 묘사형(descriptor form)을 사용하여 모델링 한다. μ-합성법으로 설계된 H/sub ∞/ 제어기를 표준 H/sub ∞/ 제어기와 비교한다. 두 개의 H/sub ∞/ 제어기 성능을 비교하기 위해, μ-합성 제어기가 구조적 불확실성을 가지고 있다는 것을 제외하고는 서로 동일한 하중함수를 가지고 설계한다. 표준 H/sub ∞/ 제어기와 비교하여 설계된 제어기는 만족스러운 강건 안정성과 강건 성능을 가지는 것을 시뮬레이션과 실험을 통해 확인한다.

  • PDF

Active Vibration Control of a Cantilever Beam using Electromagnetic Actuators

  • Kangwoong Ko;Sooyoung Choi;Kiheon Park
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.65-71
    • /
    • 2002
  • In this paper, an experiment for the active vibration control of a cantilever beam uses electromagnet as an actuator and uses a laser sensor to measure the position of the bending beam, constituting a non-contacting control system. A mathematical model of the overall system is derived to analytically design an appropriate controller. Dynamic equations of the electromagnetic actuator and the beam are combined to find the transfer function from the actuator to the sensor. The effectiveness of the obtained model is verified by various experiments and an improper PID controller is designed based on the obtained model. According to analysis, the coefficient of the derivative controller is the most important parameter for handling the performance and the stability margin of the control system. The experimental results of the active control system are compared with those of the open loop system.

  • PDF

불확실성을 갖는 단일 링크 탄성 Arm의 슬라이딩 모드 제어 (Sliding mode control of a single-link flexible arm with uncertainties)

  • 신호철;김정식;최승복;정재천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.546-551
    • /
    • 1993
  • A new robust sliding mode controller is formulated for the tip position control of a single-link flexible manipulator with parameter variations. After establishing the plant model characterized by a noncollocated uncertain control system, a sliding surface which guarantees stable sliding mode motion is synthesized in an optimal manner. The surface is then modified to adapt arbitrarily given initial conditions. A discontinuous control law associated with the modified surface is designed by restricting that velocity state variables are not available from direct sensor measurements. Using the proposed control law favorable system responses are accomplished through shortening the reaching phase of state trajectory without increasing maximum control torque as well as undesirable chattering. Furthermore, a low sensitiveness to uncertainties is obtained from inherent salient properties of the proposed control system. Computer simulations are undertaken in order to demonstrate these superior control performance characteristics to be accrued from the proposed methodology.

  • PDF

An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

  • Kwon, Dong-Soo;Babcock, Scott-M.;Book, Wayne-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.599-606
    • /
    • 1992
  • A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effector exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-Unk flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  • PDF

분산 선배열 소나와 레이다를 이용한 표적 연관 기법 (Association Algorithm for the Distributed Passive Linear Arrays and the Radar)

  • 김진석
    • 한국군사과학기술학회지
    • /
    • 제8권1호
    • /
    • pp.25-31
    • /
    • 2005
  • PLA(Passive Linear Array) system has been primarily utilized to detect and track underwater targets, such as submarines. This system has difficulty in distinguishing between underwater targets and surface ships in a dense target environment. And a single-PLA system does not provide target state observability. At least two PLAs are necessary to observe a track uniquely. To classify and localize the underwater targets effectively, first of all, it is very of importance to discriminate the surface ships in the multi-target environment. These problems can be overcome by the association of distributed PLAs and radars. In this paper, we present an algorithm to solve the track-to-track association of the heterogeneous data from three PLAs and one radar are noncollocated with known sensor positions. Also, this paper shows the simulation results to verify the proposed algorithm.

Robust Sinusoidal Tracking of High Performance Torsional Plants

  • Oloomi, Hossein M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1581-1586
    • /
    • 2004
  • In this paper, we study the tracking performance of a torsion disk system where the plant is required to track a triangular-type command signal with a small steady state error and delay. We investigate the tracking performance of the traditional inner/outer loop approach and underline its limitations in high performance applications. We then design a more advanced controller using the mixed sensitivity robust control approach and show that the tracking performance of the system can be improved substantially. The success of the design, even for the case of lightly damped plants such as the one considered in this paper, is largely the result of the proper weights selection used in the mixed sensitivity design. The main contribution of this paper is, therefore, the development of design guidelines for the weights selection when accurate tracking of periodic reference signals are desired.

  • PDF

슬라이딩 모드 제어기를 이용한 당일 링크 탄성 Arm의 선단위치 제어

  • 신호철;박동원;최승복;정재천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.218-222
    • /
    • 1993
  • A sliding mode controller associated with the moving sliding surface is formulate for the tip position control of a single-link flexible manipulator. After establishing the plant model which characterizes a noncollocated control system, a discontinuous control law is then constructed by restricting that velocity state variables are not available from direct sensor measurements. Using the proposed control law favorable system responses are accomplished through shortening the reaching phase without increasing maximum control torque. Furthermore, a low sensitiveness to extraneous disturbance is obtained. Computer simulations are undertaken in order to demonstrate these superior control performance characteristics to be accrued from the proposed methodology.