• Title/Summary/Keyword: Non-woody pellet

Search Result 4, Processing Time 0.023 seconds

Fuel Characteristics of Biomass Pellets Fabricated with Reed Stalk (갈대를 이용하여 제조한 바이오펠릿의 품질 특성)

  • Kim, Seong-ho;Han, Gyu-Seong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.99-106
    • /
    • 2016
  • Our aim was to identify the potential of reed stalk as a raw materials for biomass pellet production. Compared to woody biomass, reed stalk contained significant levels of ash. The holocellulose content of reed stalk was similar to that of larch, but the lignin content of reed stalk was lower than that of larch. In the elemental analysis, chlorine content of reed stalk was much higher than that of larch, and satisfied only the mixed biomass pellet B of European non-woody pellet standards(EN 14961-6). In quantitative analysis of the ash, heavy metals contents of reed stalk satisfied European non-woody pellet standards. Higher heating value of oven-dried reed stalk pellet was slightly lower than that of larch wood pellet. The durability of reed stalk pellet was lower than that of larch wood pellet. The results of this study indicate that reed stalk might be used as a raw material of mixed biomass pellet B.

Evaluating the Properties and Commercializing Potential Of Rape Stalk-based Pellets Produced with a Pilot-scaled Flat-die Pellet Mill (파일럿 규모의 평다이 성형기로 제조한 유채대 펠릿의 연료적 특성 및 상용화 가능성 평가)

  • Sei Chang Oh;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • This study was conducted to evaluate the potential of rape stalk (RAS) as a raw material for the production of solid bio-fuels. RAS was immersed in an aqueous solution with acetic acid concentration of 1 percent, The content of reducing sugars separated from the RAS was analyzed. Glucose showed the highest content followed by xylose, galactose, arabinose and mannose. The immersed and non-immersed RAS were used for producing pellets with a pilot-scaled flat-die pellet mill. Bulk density and calorific values of the pellets improved with the use of the immersed RAS and the addition of wood particles. The values exceeded the minimum requirements for the A-grade of non-woody pellets (≧600 kg/m3 & ≧ 14.5 MJ/kg) designated by the ISO. Ash content of the pellets reduced with the immersion of RAS and the value satisfied the A-grade level (≦6.0%) of the ISO standard. The durability of the immersed RAS-based pellets was much higher than that of non-immersed IRS-based pellets, and the values were increased with the addition of wood particles. However, the durability did not meet the acceptance level for the B-grade of non-woody pellets (≧96.0%) designated by the ISO. These results suggested that the addition of binders in the production of non-woody pellets using an RAS immersed in acetic acid-based aqueous solution is required for the commercialization of the pellets.

The interaction of woody biomass with bituminous coal in their blends

  • Park, Ho Young;Park, Yoon Hwa;Kim, Young Joo;Kim, Hyun Hee;Park, Sang Bin
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.320-328
    • /
    • 2017
  • This paper describes the non-isothermal pyrolysis of wood pellet and saw dust, and their blends with bituminous coal. The blends showed the distinct, two peaks in thermogravimetric curves, and the first peak came from the biomass pyrolysis and the second one came from the coal pyrolysis. The interaction in the blend was evaluated in terms of the maximum rate of weight loss, characteristic temperatures, char yields, and the calculated and experimental thermogravimetric curves. The activation energies and frequency factors for the blends were obtained with the multi-stage, Coats and Redfern method. The respective activation energies of 73 and 67 kJ/mol and the frequency factors of 725,100 and $65,262min^{-1}$ were obtained for the present wood pellet and saw dust samples. The thermogravimetric study shows that there is no significant interaction between the present biomass and coal in the blends, and the pyrolysis behavior can be described with the additive rule.

Evaluating The Fuel Characteristics of Wood Pellets Fabricated with Wood Tar and Starch as An Additive (목타르와 전분 첨가제 혼합에 따른 목재펠릿 품질특성 평가)

  • Ahn, Byoung-Jun;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • This study was conducted to investigate the potential of non-used forest biomass residues as raw materials for making wood pellets with additives such as wood tar and starch and to evaluate fuel characteristics of the pellets. Wood tar, a by-product provided from the carbonization process of wood, could be a suitable additive for wood pellet production due to its higher calorific value and lower hazardous heavy metals, such as cadmium and mercury, compared to woody biomass. When the wood tar (10 wt%) was added, the calorific value was increased from 4,630 kcal/kg (wood pellet without additive) to 4,800 kcal/kg (wood pellet with additive). With the increase of additive amount into wood pellet, the length and individual density of wood pellet increased. In addition, bulk density of the pellets was increased, whereas the fine content was decreased. Consequently the overall productivity of wood pellets was improved by adding 2 w% additives into wood pellets; the percentage of productivity increase was 5.9% and 4.9% for adding starch and wood tar, respectively.