• 제목/요약/키워드: Non-uniform heat distribution

검색결과 72건 처리시간 0.016초

CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석 (Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation)

  • 김수영;원근혜;이민지;김성원
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.535-543
    • /
    • 2022
  • 실리콘 카바이드 입자(평균 입도 123 ㎛)의 유동층 태양열 흡열기의 성능 및 효율에 영향을 미치는 입자 거동 해석을 위해 MP-PIC 모델을 이용하여 전산모사를 수행하였고, 기존 실험결과와의 비교를 통해 검증하였다. 특히, 본 연구에서는 실험적으로 접근하기 어려운 유동층 표면 부근에서의 거동을 모사함으로써 흡열 성능과 입자 거동과의 상호 영향을 분석하였다. CPFD 모사결과는 입자층 및 프리보드에서의 평균 고체체류량과 압력요동 등 수력학적 특성 실험결과를 잘 예측하였다. 입자 흡열기에서 1차적으로 태양열 에너지를 흡수하여 층 내부로 전달하는 층 표면 부근에서의 국부 고체체류량은 입자층 내 기포거동에 따라 중심부에서 상대적으로 낮은 값을 나타내는 불균일 분포를 나타내었다. 프리보드 영역에서 국부 고체체류량은 기체속도가 증가할수록 축방향과 각 높이에서의 횡방향에서 불균일성이 증가하였고, 이는 입자 흡열기의 프리보드 영역 내 비산된 입자에 의해 반사된 태양광 에너지 손실과 연관된 압력강하 상대표준편차 증가의 원인임을 나타내었다. 입자 흡열기 내 기체속도 증가에 따른 국부적인 기체 및 입자 속도의 변화에 대한 고찰을 통해, 유동층 내 국부적인 입자거동 특성은 Geldart B 입자 물성과 관련된 입자층 내 기포 거동과 밀접하게 연관됨을 확인하였다. 유동층 입자 흡열기의 성능 척도인 일사량 당 유동기체의 출입구 온도차(∆T/IDNI)는 입자 층 표면 및 표면 상부 프리보드 영역 내 압력요동 RSD와 상관관계가 매우 높음을 확인하였고, 이 결과는 흡열기 성능 개선에 활용할 수 있을 것으로 판단되었다.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF