• Title/Summary/Keyword: Non-uniform Rational B-spline

Search Result 67, Processing Time 0.029 seconds

A Study on Prediction of Acoustic Loads of Launch Vehicle Using NURBS Curve Modeling (넙스(NURBS) 곡선 모델링을 이용한 발사체 음향하중 예측에 대한 연구)

  • Park, Seoryong;Kim, Hongil;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • The Intense acoustic wave generated by the jet flame at the lift-off causes the vehicle to vibrate in the form of acoustic loads. The DSM-II(Distributing Source Method-II), which is a representative empirical acoustic loads prediction method, is a method of distributing a noise source along a jet flame axis and has advantages in calculation cost and accuracy. However, due to the limitation of the distributing method, there is a limit to accurately reflect the various launch pad configurations. In this study, acoustic loads prediction method which can freely distribute noise sources is studied. by introducing NURBS(Non-Uniform Rational B-Spline) modeling into empirical prediction method. For the verification of the newly introduced analytical technique of the NURBS, the acoustic loads prediction for the Epsilon rocket's low-noise launch pad shape was performed and the results of the analysis were compared with the existing prediction methods and experimental results.

An universal NURBS interpolator for an architectured CNC controller (개방형 수치제어 장치를 위한 범용 NURBS 보간기)

  • 강성균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.656-659
    • /
    • 1996
  • An universal NURBS interpolation for an open architectured CNC controller is proposed in order to unify internal data structure and algorithm of different interpolations such as linear, circular and spline, and to intelligently interface CAD database of the various workpiece contour. Furthermore, NURBS interpolation may result in better surface roughness and high speed machining due to the continuous generation of cutter movement. The mathematical manipulation of NURBS is presented and the practical implementation on the CNC controller of a lathe is discussed for real machining. The comparison between a computer design and workpieces machined on a lathe shows the feasibility of the NURBS interpolation format as an universal interpolation scheme.

  • PDF

A locally refinable T-spline finite element method for CAD/CAE integration

  • Uhm, Tae-Kyoung;Kim, Ki-Seung;Seo, Yu-Deok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.225-245
    • /
    • 2008
  • T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

Study on the Development of an Optimal Hull Form

  • Cho Hee-Jong;Lee Gyoung-Woo;Youn Soon-Dong;Chun Ho-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.603-609
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP( sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verify the validity of the developed program the numerical calculations for Wigley hull and Series 60 Cb=0.6 hull are performed and the results obtained after the numerical calculations are compared with the initial hulls.

Research on Machineability in NURBS Interpolator Considering Constant Material Removal Rate (소재제거율을 일정하게 한 NURBS 보간기에서 절삭성 고찰)

  • Ko Tae Jo;Kim Hee Sul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.60-66
    • /
    • 2004
  • Increasing demands on precision machining of 3D free-form surface have necessitated the tool to move smoothly with varying feedrate. To this regard, parametric interpolators such as NURBS (Non-Uniform Rational B-Spline) interpolator have been introduced in CNC machining system. Such interpolators reduce the data burden in NC code, increase data transfer rate into NC controller, and finally give smooth motion while machining. In this research, a new concept to control cutting load in NURBS Interpolator was tried based on the curvature of curve. This is to protect cutting tool, and to have good machinability. For proof of the system, cutting force and surface topography were evaluated. From the experimental results. the interpolator is good enough for machining a free-form surface.

Surface Rendering using Stereo Images (스테레오 영상을 이용한 Surface Rendering)

  • Lee, S.J.;Yoon, S.W.;Cho, Y.B.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2818-2820
    • /
    • 2001
  • This paper presents the method of 3D reconstruction of the depth information from the endoscopic stereo scopic images. After camera modeling to find camera parameters, we performed feature-point based stereo matching to find depth information. Acquired some depth information is finally 3D reconstructed using the NURBS(Non Uniform Rational B-Spline) algorithm. The final result image is helpful for the understanding of depth information visually.

  • PDF

NURBS Post-Processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1227-1233
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good fur precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied and the machining result of NURBS tool path was compared with that of linear tool path. The N-post including both a post-processing and a virtual machining software was developed. The N-Post transforms linear tool path to NURBS tool path and quickly shades a machined product on OpenGL view, while comparing a machined surface with a original CAD one. A virtulal machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error and machining time of post-processed NURBS tool path were investigated.

NURBS Post-processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1111-1117
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good for precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied, and the machining result of NURBS tool path was compared with that of linear tool path. The N-post, post-processing and virtual machining software was developed. The N-Post post-processes linear tool path to NURBS tool path and quickly shades machined product on OpenGL view and compares a machined product with original CAD surface. A virtual machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error of post-processed NURBS tool path was reduced to 43%. The original tool path and NURBS tool path was used to machine general model using same machine tool and machining condition. The machining time of post-processed NURBS tool path was reduced up to 38%.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.

Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data (MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화)

  • Chung, Tae-Eun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.