• 제목/요약/키워드: Non-thermal Plasma

검색결과 232건 처리시간 0.032초

Non-thermal plasma를 이용한 VOCs의 제거기술

  • 송영훈;신완호;김관태;김석준;심순용;장동제
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.31-36
    • /
    • 1998
  • An experimental study has been performed to characterize fundamental aspects of VOCs removal using non-thermal palsma technique. The removed VOCs in the present study are toluene ($C_6H_5CH_3$), ethene ($C_2H_4$), propene ($C_3H_6$) which are typical air pollutants generated from industry and automobile engines. The non-thermal plasma used in the present experiments has been produced in a wire-cylinder reactor with pulsed corona or a packed-bed reactor filled with ceramic bead. These differently generated non-thermal plasma have been visualized with an intensified CCD. The images of non-thermal plasma have been used for optimal design of a corona reactor used in the present study. The experimental results show that the removal efficiencies of VOCs with non-thermal plasma are dependant on the reactivity of VOCs with OH, O, and $O_3$. The results also show that the removal efficiencies of VOCs decrease significantly when VOCs are treated with NO that is also oxidized in the presence of OH, O, and $O_3$.

  • PDF

Non-thermal plasma technology for abatement of pollutant emission from marine diesel engine

  • Panomsuwan, Gasidit;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.929-934
    • /
    • 2016
  • Plasma technology has long been regarded as a key essential tool in many industrial and technological sectors. However, the advancement of plasma technology in marine applications has not been fully realized yet. Herein, we present a short overview on the recent trends in utilization of plasma technology for air-pollution treatment in marine diesel exhaust. Four non-thermal plasma system, including electron beam dry scrubber (EBDS), dielectric barrier discharge (DBD), electron beam-microwave (EB-MW) plasma hybrid system, and plasma-catalytic hybrid system, are described with emphasis on their efficiency in removals of $NO_x$ and $SO_x$ gases. Non-thermal plasma has the great potential to be an efficient and environmentally compatible technique in simultaneous removals of $NO_x$ and $SO_x$ gases from the exhaust of marine diesel engine in the future.

저온 플라즈마를 이용한 과 수소가스 발생에 관한 실험적 연구 (Experiment study on hydrogen-rich gas generation using non-thermal plasma)

  • 왕혜;위위;정맹뢰;채재우;유광훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2918-2922
    • /
    • 2007
  • This is a report of a feasibility study on the reduction of harmful substances such as particulate matters and nitric oxides emitted from diesel engines by using a plasma reforming system that can generate hydrogen-rich gas. In this paper, an exhaust reduction mechanism of the non-thermal plasma reaction was investigated to perform its efficiency and characteristics on producing hydrogen-rich gas. Firstly, we explain briefly the chemistry of hydrocarbon reforming. The experimental system is showed in the second part. Finally, we demonstrate the feasibility of producing hydrogen using non-thermal plasma. The experimental results are focused on the influence of the different operating parameters (air ratio, inlet flow rates, voltage) on the reformer efficiency and the composition of the produced gas.

  • PDF

Combined De-NOx Process with $NH_3$ SCR and Non-thermal Plasma Process for Removing NOx and Soot from Diesel Exhaust Gases

  • Chung, Kyung-Yul;Song, Young-Hoon;Oh, Sang-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.657-665
    • /
    • 2003
  • Combined De-NOx Process in which $NH_3$ SCR (Selective Catalytic Reduction) and non-thermal Plasma Process are simultaneously used, has been investigated with a pilot test facility. The pilot test facility treats the combustion flue gases exhausted from a diesel engine that generates 240 kW of electrical power. Test results show that up to 80 % of NOx (NO and NO2) can be removed at 100 - $200^{\circ}C$. None of conventional De-NOx techniques works under such low temperature range. In addition to NOx. the Pilot test results show that soot can be simultaneously treated with the present non-thermal plasma technique. The present pilot test shows that the electrical power consumption to operate the non-thermal plasma reactor is equivalent to 3 - 4 % of the electrical power generated by the diesel engine.

유전체 방전을 이용한 확산화염에서의 매연저감 특성 (Soot Reduction in Diffusion Flames Using Dielectric Barrier Discharge)

  • 차민석;김관태;정석호;이상민
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • The effect of non-thermal plasma on diffusion flames in co-flow jets has been studied experimentally by adopting a dielectric barrier discharge technique. The generation of streamers was enhanced with a flame due to increased reduced electric fields by high temperature burnt gas and the abundance of ions in the flame region. The effect of streamers on flame behavior reveals that the flame length was significantly decreased as the applied voltage increased and the yellow luminosity by the radiation of soot particles was also significantly reduced. The formation of PAH and soot was influenced appreciably by the non-thermal plasma, while the flame temperature and the concentration of major species were not influence much with the plasma generation. The results demonstrated that the application of non-thermal plasma can be a viable technique in controlling soot generation in flames with low power consumption in the order of 1 W.

  • PDF

저온 플라즈마 공정을 이용한 상용설비의 배연가스 처리 기술개발 (Technical Development of Flue Gas Control at Commercial Plant Using the Non-thermal Plasma Process)

  • 유정석;백민수;김태희;김정일;김유석;최석호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.939-944
    • /
    • 2001
  • For the application of simultaneous $DeSO_{2}\;&\;DeNO_{x}$ equipment using non-thermal plasma process to the industrial and power plants, the many types of plasma device and process were studied. The e-beam and pulsed plasma corona discharge process are outstanding for the study to apply commercial large-scale plant from among these. In this paper, non-thermal plasma of technical trends and the characteristics of system developed by Doosan heavy industries & construction Co., Ltd. are explained. We have researched pulsed plasma corona discharge process since 1994. At the basis of reasonable results for the pilot plant, we constructed the demonstration plant at a domestic coal-fired power plant in 1999, as the previous step for commercial use. In near future, enough information about designs and costs of commercial-size system will be obtained.

  • PDF

Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK)

  • Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권6호
    • /
    • pp.408-414
    • /
    • 2018
  • PURPOSE. This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS. Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with $50{\mu}m$ $Al_2O_3$ particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling ($5^{\circ}C$ to $55^{\circ}C$ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS. The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION. The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

화염과 저온플라즈마의 상호작용에 관한 연구 (Interaction between a Flame and a Non-thermal Plasma)

  • 차민석;이상민;김관태;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.179-184
    • /
    • 2002
  • Interaction between flames and non-thermal plasmas of DBD type has been experimentally investigated. Vigorous streamers were observed under flame conditions because of the increase of reduced field (electrical) at high temperature as well as the seeding of free electrons and ions generated inside the flame. Flame lengths were significantly shortened as the applied voltage increased on account of intense mixing by ionic winds and soot-induced flows. Flame luminosities severely decreased under plasma conditions, which means the reduction of soot, since the residence time was reduced because of the flame shortening. Temperature and major species concentrations measured by FTIR were not changed despite the plasma generation. which shows overall chemistries were not affected by non-thermal plasmas.

  • PDF

비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과 (Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli)

  • 김기영;백남원;김용희;유관호
    • 한국산업보건학회지
    • /
    • 제28권1호
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.

충전형 저온 플라즈마 반응기에서 시안 화합물의 분해 특성 (Decomposition Characteristics of Cyano-compounds in Non-thermal Packed-Bed-Plasma-Reactor)

  • 류삼곤;박명규;이해완
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.343-347
    • /
    • 2012
  • 충전형 저온 플라즈마 반응기 내에서의 가스 상 시안화합물의 분해특성을 반응기로 투입되는 방전 전력, 시안화합물의 유입농도, 운반기체인 공기의 습도 및 반응기 내의 충전물질 등을 변수로 연구하였다. 저온플라즈마 방전의 경우 시안화합물들의 분해는 트리클로로에틸렌에 비하여 상대적으로 매우 낮은 효율을 보였다. 그러나 플라즈마 방전 영역에 알루미나 또는 백금/알루미나 구슬을 충전한 경우 분해효율이 크게 높아졌으며 이는 플라즈마 반응과 더불어 백금/알루미나의 촉매작용에 의한 촉매 반응이 동시에 작용함에 기인한 것으로 판단된다.