• Title/Summary/Keyword: Non-small cell lung cancer(NSCLC)

Search Result 521, Processing Time 0.027 seconds

The Regulation of FOXP3 Expression by the Treatment of TGF-${\beta}$ and the Modification of DNA Methylation in Lung Cancer Cell Lines

  • Um, Sang-Won;Lee, Sang-Hee;Kim, Ho-Joong;Kwon, O-Jung;Kim, Hang-Rae;Kang, Jae-Seung;Lee, Wang-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.3
    • /
    • pp.206-217
    • /
    • 2011
  • Background: Transcription factor FOXP3 characterizes the thymically derived regulatory T cells. FOXP3 is expressed by cancer cell itself and FOXP3 expression was induced by TGF-${\beta}$ treatment in pancreatic cancer cell line. However, the expression of FOXP3 expression is not well known in patients with lung cancer. This study was conducted to investigate the expression of FOXP3 in patients with lung cancer and to investigate the regulation of FOXP3 expression by the treatment of TGF-${\beta}$ and DNA methyltransferase inhibitor in lung cancer cell lines. Methods: FOXP3 expression in the tissue of patients with resected non-small cell lung cancer (NSCLC) was evaluated by immunohistochemistry. The regulation of FOXP3 expression was investigated by Western blot and RT-PCR after lung cancer cell lines were stimulated with TGF-${\beta}1$ and TGF-${\beta}2$. The regulation of FOXP3 expression was also investigated by RT-PCR and flow cytometry after lung cancer cell lines were treated with DNA methyltransferase inhibitor (5-AZA-dC). Results: FOXP3 expression was confirmed in 27% of patients with NSCLC. In NCI-H460 cell line, TGF-${\beta}2$ decreased FOXP3 mRNA and protein expressions. In A549 cell line, both TGF-${\beta}1$ and TGF-${\beta}2$ decreased FOXP3 mRNA and protein expressions. 5-AZA-dC increased FOXP3 mRNA expression in NCI-H460 and A549 cell lines. Moreover, 5-AZA-dC increased intracellular FOXP3 protein expression in A549 cell lines. Conclusion: It was shown that FOXP3 is expressed by cancer cell itself in patients with NSCLC. Treatment of TGF-${\beta}2$ and DNA methyltransferase inhibitor seems to be associated with the regulation of FOXP3 expression in lung cancer cell lines.

Potential Predictors of Sensitivity to Pemetrexed as First-line Chemotherapy for Patients with Advanced Non-Squamous NSCLCs

  • Lu, Yan-Yan;Huang, Xin-En;Xu, Lin;Liu, De-Gan;Cao, Jie;Wu, Xue-Yan;Liu, Jin;Xiang, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2005-2008
    • /
    • 2013
  • Background: Pemetrexed (PEM) is effective in first-line treatment for patients with non-squamous non-small cell lung cancer (NSCLC). However there are currently no definitive determinants to certify which patients could benefit from PEM. To improve the efficacy of PEM combined with platinum as first-line therapy for advanced non-squamous NSCLC, we conducted this retrospective study to detect potential determinants of this regimen. Methods: We recruited 109 patients with advanced non-squamous NSCLC who received PEM with a platinum as first-line therapy from June 2006 to February 2013 in Jiangsu Cancer Hospital. Multiple variables (age, sex, smoking, degree of cell differentiation, hemoglobin, platinum drugs combined, positions of metastasis) were selected. Logistic regression analysis was used to analyse relationships between these variables and tumor response. Result: In univariate analysis, we found that age and platinum significantly influenced the results of PEM therapy (P<0.05). In multivariable analysis, no factors were independently significant. Conclusion: Our analysis did not suggest that the age, sex, metastasis of liver or other organs, hemoglobin, smoking history and pathological differentiation are associated with the response of PEM. We should conduct further analyses with larger sample size to reconfirm this issue.

Are Neutrophil/Lymphocyte and Platelet/Lymphocyte Rates in Patients with Non-Small Cell Lung Cancer Associated with Treatment Response and Prognosis?

  • Unal, Dilek;Eroglu, Celalettin;Kurtul, Neslihan;Oguz, Arzu;Tasdemir, Arzu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5237-5242
    • /
    • 2013
  • Background: Inflammation is a critical component of tumor progression. Many cancers arise from sites of infection, chronic irritation, and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an essential participant in the neoplastic process, promoting proliferation, survival and migration. Platelets can release some growth factors such as platelet-derived growth factor, platelet factor 4, and thrombospondin. Such factors have been shown to promote hematogenous tumour spread, tumor cell adhesion and invasion, and angiogenesis and to play an important role in tumor progression. In this study, we aimed to investigate effects of the pretreatment neutrophil to lymphocyte ratio (NLR) and the platelet to lymphocyte ratio (PLR) on survival and response to chemoradiotherapy in patients with non-small-cell lung cancer (NSCLC). Materials and Methods: Ninety-four patients with non-metastatic NSCLC were included and separated into two groups according to median valuse of NLR and PLR (low:<3.44 or high:${\geq}3.44$ and low:<194 or high${\geq}194$, respectively). Results: Pretreatment high NLR and PLR were associated with significantly shorter disease-free and overall survival rates. Multivariate analysis revealed that the overall survival rates were significantly linked with PLR (OR: 1.87, CI: 1.20-2.91, p: 0.006) and response to chemoradiotherapy (OR: 1.80, CI: 1.14-2.81, p: 0.012) and the disease-free survival rates were significantly associated with NLR (OR: 1.81, CI: 1.16-2.82, p: 0.009) and response to chemoradiotherapy (OR: 2.30, CI: 1.45-3.66, p: 0.001). There was no significant difference between patients with high and low NLR in terms of response to chemoradiotherapy. Similarly, there was no significant influence of the PLR. Conclusions: Pretreatment NLR and PLR measurements can provide important prognostic results in patients with NSCLC and assessment of the two parameters together appears to better predict the prognosis in patients with NSCLC. The effect of inflammation, indicators of NLR and PLR, on survival seems independent of the response to chemoradiotherapy.

Curcumin-induced Cell Death of Human Lung Cancer Cells (Curcumin에 의해 유도되는 인간 폐암 세포주의 세포사멸)

  • Hwasin Lee;Bobae Park;Sun-Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Dong Hyun Sohn;Ye-Rin Kim;Sang-Yull Lee;Dong-Seob Kim;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.713-723
    • /
    • 2023
  • Lung cancer is a type of cancer that has the highest mortality rate. It is mainly classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Chemotherapy is used to treat lung cancer, but long-term treatment causes side effects and drug resistances. Curcumin is a bright yellow polyphenol extracted from the root of turmeric. It has biological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory effects. In this study, we observed differential cell death in human lung cancer cells. Based on the results, curcumin at 10, 30, and 50 μM exhibited a dose-dependent inhibition on the cell survival of several lung cancer cells, with minor differential phenotypes. In addition, apoptosis, autophagy, and reactive oxygen species (ROS) regeneration were observed through flow cytometry. Curcumin dose-dependently increased these phenotypes in A549 (NSCLC) and DMS53 (SCLC), which were restored by corresponding inhibitors. Western blotting was performed to measure the level of expression of apoptosis- and autophagy-related proteins. The results indicate that Bax, PARP, pro-caspase-3, and Bcl-2 were dose-dependently regulated by curcumin, with seemingly higher Bax/Bcl-2 ratios in DMS53. In addition, autophagic proteins, p-AKT, p62, and LC3B, were dose-dependently regulated by curcumin. ROS inhibition by diphenyleneiodonium reduced the induction of apoptosis and autophagy generated by curcumin. Taken together, it is suggested that curcumin induces apoptosis and autophagy via ROS generation, leading to cell death, with minor differences between human lung cancer cells.

Metformin Addition to Chemotherapy in Stage IV Non-Small Cell Lung Cancer: an Open Label Randomized Controlled Study

  • Sayed, Rana;Saad, Amr S;El Wakeel, Lamia;Elkholy, Engi;Badary, Osama
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6621-6626
    • /
    • 2015
  • Purpose: To evaluate effects of metformin on clinical outcome of non-diabetic patients with stage IV NSCLC. Materials and Methods: A prospective, randomized, open-label, controlled pilot study was conducted on patients with stage IV NSCLC with an Eastern Cooperative Oncology Group Performance Status (ECOG PS) of 0-2, excluding patients with diabetes and lactic acidosis. Thirty chemo-$na\ddot{i}ve$, non-diabetic patients with stage IV NSCLC were enrolled. Fifteen patients received intravenous gemcitabine/cisplatin regimen alone (arm B) while fifteen patients received the same regimen plus daily oral metformin 500mg (arm A). The effect of metformin on chemotherapy-response rates, survival, and adverse events in these patients was evaluated. Results: Objective response rate (ORR) and median overall survival (OS) in arms A and B were 46.7% versus 13.3% respectively, p=0.109 and 12 months versus 6.5 months, respectively, p=0.119. Median progression free survival (PFS) in arms A and B was 5.5 months versus 5 months, p=0.062. No significant increase in toxicity was observed in arm A versus arm B. Percentage of patients who experienced nausea was significantly lower in arm A versus arm B, at 26.7% versus 66.7% respectively, p=0.028. Conclusions: Metformin administration reduced occurrence of chemotherapy induced-nausea. Non-statistically significant improvements in the ORR or OS were observed. Metformin had no effect on PFS.

Prediction of Chemotherapeutic Response in Unresectable Non-small-cell Lung Cancer (NSCLC) Patients by 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) Assay

  • Chen, Juan;Cheng, Guo-Hua;Chen, Li-Pai;Pang, Ting-Yuan;Wang, Xiao-Le
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3057-3062
    • /
    • 2013
  • Background: Selecting chemotherapy regimens guided by chemosensitivity tests can provide individualized therapies for cancer patients. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium, inner salt (MTS) assay is one in vitro assay which has become widely used to evaluate the sensitivity to anticancer agents. The aim of this study was to evaluate the clinical applicability and accuracy of MTS assay for predicting chemotherapeutic response in unresectable NSCLC patients. Methods: Cancer cells were isolated from malignant pleural effusions of patients by density gradient centrifugation, and their sensitivity to eight chemotherapeutic agents was examined by MTS assay and compared with clinical response. Results: A total of 37 patients participated in this study, and MTS assay produced results successfully in 34 patients (91.9%). The sensitivity rates ranged from 8.8% to 88.2%. Twenty-four of 34 patients who received chemotherapy were evaluated for in vitro-in vivo response analysis. The correlation between in vitro chemosensitivity result and in vivo response was highly significant (P=0.003), and the total predictive accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for MTS assay were 87.5%, 94.1%, 71.4%, 88.9%, and 83.3%, respectively. The in vitro sensitivity for CDDP also showed a significant correlation with in vivo response (P=0.018, r=0.522). Conclusion: MTS assay is a preferable in vitro chemosensitivity assay that could be use to predict the response to chemotherapy and select the appropriate chemotherapy regimens for unresectable NSCLC patients, which could greatly improve therapeutic efficacy and reduce unnecessary adverse effects.

Prediction of Lung Cancer Based on Serum Biomarkers by Gene Expression Programming Methods

  • Yu, Zhuang;Chen, Xiao-Zheng;Cui, Lian-Hua;Si, Hong-Zong;Lu, Hai-Jiao;Liu, Shi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9367-9373
    • /
    • 2014
  • In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are requentlyused lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.

Immune Checkpoint Inhibitor Score Predicts Survival Benefit of Immunotherapy in Patients with Non-small Cell Lung Cancer

  • Da Hyun Kang;Chang-Min Choi;Cheol-Kyu Park;In-Jae Oh;Young-Chul Kim;Seong Hoon Yoon;Yoonjoo Kim;Jeong Eun Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.4
    • /
    • pp.483-493
    • /
    • 2024
  • Background: The use of immune checkpoint inhibitors (ICIs) in patients with advanced lung cancer is increasing. Despite ongoing studies to predict the efficacy of ICIs, its use in clinical practice remains difficult. Thus, we aimed to discover a predictive marker by analyzing blood cell characteristics and developing a scoring system for patients treated with ICIs. Methods: This was a prospective multicenter study in patients with advanced non-small cell lung cancer (NSCLC) who received ICIs as second-line treatment from June 2021 to November 2022. Blood cell parameters in routine blood samples were evaluated using an automated hematology analyzer. Immune checkpoint inhibitor score (IChIS) was calculated as the sum of neutrophil count score and immature granulocyte score. Results: A total of 143 patients from four institutions were included. The treatment response was as follows: partial response, 8.4%; stable disease, 37.1%; and progressive disease, 44.8%. Median progression-free survival and overall survival after ICI treatment was 3.0 and 8.3 months, respectively. Median progression-free survival in patients with an IChIS of 0 was 4.0 months, which was significantly longer than 1.9 months in patients with an IChIS of 1 and 1.0 month in those with an IChIS of 2 (p=0.001). The median overall survival in patients with an IChIS of 0 was 10.2 months, which was significantly longer than 6.8 and 1.8 months in patients with an IChIS of 1 and 2, respectively (p<0.001). Conclusion: Baseline IChIS could be a potential biomarker for predicting survival benefit of immunotherapy in NSCLC.

Improving Combination Cancer Therapy by Acetaminophen and Romidepsin in Non-small Cell Lung Cancer Cells

  • Lee, Seong-Min;Park, James S.;Kim, Keun-Sik
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • Combination chemotherapy is more effective than mono-chemotherapy and is widely used in clinical practice for enhanced cancer treatment. In this study, we investigated the potential synergistic effects of acetaminophen, a common component in many cold medicines, and romidepsin, a histone deacetylase (HDAC) inhibitor, in the A549 non-small cell lung cancer (NSCLC) cell line. The combination of acetaminophen and romidepsin also exerted significant cytotoxicity and apoptosis induced by activation of caspase-3 on tumor cells in vitro. Moreover, combination therapy significantly induced increased production of chemokines that stimulate migration of activated T-cells into tumor cells. This mechanism can lead to active T-cell mediated anti-tumor immunity in addition to the direct cytotoxic chemotherapeutic effect. Activated T-cells led to enhanced cytotoxicity in drug-treated A549 cells through interaction with tumor cells. These results suggested that the interaction between the two drugs is synergistic and significant. In conclusion, our data showed that the use of romidepsin and low concentrations acetaminophen could induce effective anti-tumor effects via enhanced tumor immune and direct cytotoxic chemotherapeutic responses. The combination of acetaminophen with romidepsin should be considered as a promising strategy for the treatment of lung cancer.

Prevalence and Clinical Profile of EGFR Mutation In Non-Small-Cell Lung Carcinoma Patients in Southwest China

  • Zhou, Juan;Song, Xing-Bo;He, He;Zhou, Yi;Lu, Xiao-Jun;Ying, Bin-Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.965-971
    • /
    • 2016
  • Aims: To investigate the distribution of epidermal growth factor receptor (EGFR) mutations, and explore any relationships with clinical characteristics in non-small-cell lung carcinoma (NSCLC) patients. Materials and Methods: EGFR mutations were assessed by ADx-ARMS in 261 NSCLC patients from West China Hospital of Sichuan University. Relationships between EGFR mutation and clinical characteristics were analyzed by SPSS. Results: The EGFR mutation rate was 48.7% (127/261), 19-del and L858R mutations occurred predominantly, accounting for 33.1% and 40.9%, respectively, in mutated cases. Moreover, 10.2% patients were found to carry double mutations. EGFR mutations occurred more frequently in women (57.5%) than in men (41.8%) (P=0.01), and were more frequent in non-smokers (61.2%) than in former or current smokers (31.2%) (P<0.00). In addition, they were more common in adenocarcinomas (52.8%) and adenosquamous carcinomas (42.8%) than in squamous cell carcinomas (14.8%) (p<0.00). However, only smoking history and pathological types, rather than gender, proved to be associated with EGFR mutations on multivariate logistic regression analysis. No significant differences in pathological stage and metastasis status were found between EGFR wild-type and mutated cases, although EGFR mutation type was related to pathological type (p=0.00) - 19-del, L858R and other mutation types respectively occurred in 34.2%, 42.5% and 23.3% of adenocarcinomas, but in 14.3%, 0% and 85.7% of non-adenocarcinomas. Conclusions: The EGFR mutation rate was 48.7% in NSCLCs in Southwest China, so that nearly 40% patients might benefit from targeted therapies. Smoking status and pathological types were independent predictors of EGFR mutation, while EGFR mutation type was related to only pathological type, rather than smoking status.