• Title/Summary/Keyword: Non-slotted Mode

Search Result 4, Processing Time 0.019 seconds

Performance Comparison of Opportunistic Spectrum Access Schemes in Non-slotted Cognitive Radio Networks Through Simulation Research (시뮬레이션 분석을 통한 비 슬롯 모드 인지 무선망에서 기회적 스펙트럼 접속 방식의 성능 비교)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1318-1323
    • /
    • 2013
  • We consider the design of opportunistic spectrum access schemes where secondary users can opportunistically access unused spectrum in non-slotted primary systems. Two non-slotted spectrum sensing and access schemes for secondary users are considered. We present experimental results that demonstrate the performance of the considered schemes.

Throughput Performance of Slotted ALOHA Communication System with Guard Time and Capture Effect (신호점유 현상과 보호시간을 고려한 슬롯형 알로아 통신 시스템의 성능분석)

  • 이현구;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.989-998
    • /
    • 1993
  • In a bursty user traffic mode, ALOHA random multiple access protocol achieves higher performance than any conventional fixed assignment technique. One of central problems in slotted ALOHA is synchronization. Because of the long propagation delay in satellite mobile communication, packet may be spilt over into adjacent slots and thus guard time may be included between packet intervals. In conventional ALOHA channels, simultaneous transmission by two or more users results in a collision : the unsuccessful packets have to be retransmitted according to some retransmission algorithm. However, in a radio environment, users are often at different distances from the receiver : therefore, their received signals have substantially different power levels. The packet arriving with the highest energy now has a good chance of being detected accurately. Similarly, in some spread-spectrum random access systems, the earliest arriving packet dominates later arriving packets and thus captures the channel. In this paper slotted ALOHA channel with non zero guard time and capture probability is studied. Using the Markovian model, the performance of slotted ALOHA with guard time and capture effects is derived and compared with that of the conventional ALOHA via numerical analysis.

  • PDF

Performance Analysis of IEEE 802.15.4e Time Slotted Channel Hopping for Low-Rate Wireless Networks

  • Chen, Shuguang;Sun, Tingting;Yuan, Jingjing;Geng, Xiaoyan;Li, Changle;Ullah, Sana;Alnuem, Mohammed Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 2013
  • The release of IEEE 802.15.4e specification significantly develops IEEE 802.15.4. The most inspiring improvement is the enhancement for medium access control (MAC) sublayer. To study the performance of IEEE 802.15.4e MAC, in this paper we first present an overview of IEEE 802.15.4e and introduce three MAC mechanisms in IEEE 802.15.4e. And the major concern here is the Time Slotted Channel Hopping (TSCH) mode that provides deterministic access and increases network capacity. Then a detailed analytical Markov chain model for TSCH carrier sense multiple access with collision avoidance (CSMA-CA) is presented. Expressions which cover most of the crucial issues in performance analysis such as the packet loss rate, energy consumption, normalized throughput, and average access delay are presented. Finally the performance evaluation for the TSCH mode is given and we make a comprehensive comparison with unslotted CSMA-CA in non-beacon enabled mode of IEEE 802.15.4. It can validate IEEE 802.15.4e network can provide low energy consumption, deterministic access and increase network capacity.

Priority MAC based on Multi-parameters for IEEE 802.15.7 VLC in Non-saturation Environments

  • Huynh, Vu Van;Le, Le Nam-Tuan;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3C
    • /
    • pp.224-232
    • /
    • 2012
  • Priority MAC is an important issue in every communication system when we consider differentiated service applications. In this paper, we propose a mechanism to support priority MAC based on multi-parameters for IEEE 802.15.7 visible light communication (VLC). By using three parameters such as number of backoff times (NB), backoff exponent (BE) and contention window (CW), we provide priority for multi-level differentiated service applications. We consider beacon-enabled VLC personal area network (VPAN) mode with slotted version for random access algorithm in this paper. Based on a discrete-time Markov chain, we analyze the performance of proposed mechanism under non-saturation environments. By building a Markov chain model for multi-parameters, this paper presents the throughput and transmission delay time for VLC system. Numerical results show that we can apply three parameters to control the priority for VLC MAC protocol.