• Title/Summary/Keyword: Non-shielded flux cored arc welding

Search Result 2, Processing Time 0.014 seconds

Effects of gas formers of flux cored wire on spattering (FCW의 가스 발생제가 스패터링에 미치는 영향)

    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.93-99
    • /
    • 1998
  • Effects of gas formers of MgCO$_3$, CaCO$_3$ and Li$_2$CO$_3$ on the spattering phenomena were investigated for non-shielded flux cored arc welding. Spattering phenomena were pictured using high speed camera as a speed of 3000 frames per sec. As experimental results, spattering modes were classified into 4 types. The modes were spattering by arc force, gas explosion, short circuit and pore escape. The amount of spatters by arc force was 30%, gas blowing force was 40%, short circuit 10%, pore escape was 10% and others were 10%. When Li$_2$CO$_3$ was added, the amount of spatters was largest, and it decreased in the order of CaCO$_3$ and MgCO$_3$.

  • PDF

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.