• Title/Summary/Keyword: Non-seismic

Search Result 828, Processing Time 0.024 seconds

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.

The need for upgrading the seismic performance objectives

  • Kutanis, Mustafa;Boru, Elif Orak
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.401-414
    • /
    • 2014
  • The economic consequences of large earthquakes require a revolutionary change in the seismic performance objective of residential and commercial buildings. The majority of total construction costs consist of non-structural and architectural costs. Therefore, the aim of this research is to upgrade current Life Safety performance objectives and to offset adverse effects on country's economy after an occurrence of large earthquakes. However, such a proposal cannot easily prove the feasibility of cost-benefit analysis in structural design. In this paper, six generic reinforced concrete frames and dual system structures designed based on Turkish Seismic Code were used in cost analysis. The study reveals that load bearing structural systems with Immediate Occupancy performance level in seismic zones can be achieved with negligible costs.

Seismic Performance Evaluation of Circular RC Bridge Piers with Longitudinal Steel Lap Splice (주철근 겹이음에 따른 철근 콘크리트 교각의 내진성능 평가)

  • 이대형;박진영;정영수;조대연;이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.187-193
    • /
    • 2001
  • The object of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test. Existing reinforced concrete bridge piers, which were non-seismical]y designed in accordance with the conventional provisions of Korea Highway Design Specification, are needed to rating evaluate seismic performance fur probable earthquake motions in future by developing a seismic analysis computer program with estimation algorithm. This study has been performed to verify the effect of lap spliced longitudinal steel, confinement steel type and confinement steel ratio for the seismic behavior of reinforced concrete bridge piers. Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility, energy absorption, strength degradation etc.

  • PDF

Reduction in Seismic Response of URANUS Liquid Metal Reactor by Using Three-Dimensional Seismic Isolator (3차원 면진장치를 이용한 URANUS 액체금속로의 지진응답감소)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Ryu, Kang-Mook;Hwang, Il Soon;Yoo, Bong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • URANUS (Ubiquitous, Robust, Accident-forgiving, Non-proliferating, Ultra-lasting and Sustainer) has been developed with 35MWe (100MWth) operating without primary coolant pump, capitalizing on natural circulation capability of lead-bismuth eutectic (LBE) for long-life small and robust power units. To ensure the structural integrity, the large safety margin against Safe Shutdown Earthquake, 0.3g, and furthermore the cost effectiveness for URANUS, three-dimensional seismic base isolation design has been developed. The analytical model has been developed and seismic time history analyses have been carried out. The advantage for using three-dimensional seismic base isolation for URANUS has been discussed.

Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers

  • Javidan, Mohammad Mahdi;Nasab, Mohammad Seddiq Eskandari;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.645-664
    • /
    • 2021
  • There is a growing need of seismic retrofit of existing non-seismically designed structures in Korea after the 2016 Gyeongju and 2017 Pohang earthquakes, especially school buildings which experienced extensive damage during those two earthquakes. To this end, a steel multi-slit damper (MSD) was developed in this research which can be installed inside of partition walls of school buildings. Full-scale two-story RC frames were tested with and without the proposed dampers. The frames had structural details similar to school buildings constructed in the 1980s in Korea. The details of the experiments were described in detail, and the test results were validated using the analysis model. The developed seismic retrofit strategy was applied to a case study school building structure, and its seismic performance was evaluated before and after retrofit using the MSD. The results show that the developed retrofit strategy can improve the seismic performance of the structure to satisfy a given target performance level.

Toward Seismic Enhancement of Medical Facilities in Korea (대한민국 의료시설의 내진성능 향상을 위한 연구)

  • Kim, JangHoon;Kwon, Soonjung;Lee, ChungJae
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.18 no.3
    • /
    • pp.51-59
    • /
    • 2012
  • Over a past century, the continuity in post-earthquake serviceability of medical facilities has been demonstrated to be essential for sustaining a society and/or a nation stable. However, not many countries including Korea have paid appropriate attention to such a lesson learned from the previous experiences of the countries located in high seismicity for various reasons, one of which may be the lack of social consensus in allocating a portion of the resources to the earthquake preparedness. As a result, an earthquake-related policy might have been pushed away out of the list of priority in the government agenda. Therefore, the present paper attempts to persuade the public general, experts and government officials together to seek a way to upgrade the seismic safety of the country a step forward by enhancing the seismic performance of medical facilities. For this the framework of seismic design codes and standards for medical facilities, and Californian experience in managing the seismic performance enhancement program and U.S.-Italian collaborative study to improve the seismic safety of Italian hospitals are reviewed. Finally, a list of further researches and practices to perform for seismic enhancement of medical facilities in Korea are suggested.

SEISMIC ISOLATION OF LEAD-COOLED REACTORS: THE EUROPEAN PROJECT SILER

  • Forni, Massimo;Poggianti, Alessandro;Scipinotti, Riccardo;Dusi, Alberto;Manzoni, Elena
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.595-604
    • /
    • 2014
  • SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the $7^{th}$ Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the $6^{th}$ Framework Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes (지진에 의한 교량의 탄성받침장치 손상 원인 규명)

  • Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, In-Tae;Kim, Jung Han;Jeong, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The seismic isolation system have been applied in order to protect the collapse of bridge by seismic load and the vertical load transmitted from the superstructure. However, the failure and damages of non-shrinkage mortar, isolator and wedge in total 12 bridge were reported by Pohang Earthquake. In this study, the damage mechanism and behavior characteristics of elastomeric bearing by an earthquake were evaluated to consider the seismic isolation system including non-shrinkage mortar and the seat concrete of pier. To discuss the effect of installed wedge and damage mode of elastomeric bearing, the compressive-shear tests were carried out. Also, the mechanical behaviors and damage mechanism for each component of elastomeric bearing were evaluated by using finite element analysis. From the test results, the cracks were created at boundary between non-shrinkage mortar and seismic isolator and the shear loads were rapidly increased after bump into wedge. The cause for damage mechanism of seismic isolation system was investigated by comparing stress distribution of anchor socket and non-shrinkage mortar depending on wedge during earthquake.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.