• Title/Summary/Keyword: Non-saponin

Search Result 105, Processing Time 0.024 seconds

Mechanism of $Ca^{2+}$ -activated $Cl^-$ Channel Activation by Ginsenosides in Xenopus Oocytes

  • Park, Seok;Jung, Se-Yeon;Park, Seong-Hwan;Ko, Sung-Ryong;Hyewon Rhim;Park, Chul-Seung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.168-175
    • /
    • 2000
  • Relatively little is known about the signaling mechanism of ginseng saponins (ginsenosides), active ingredients of ginseng, in non-neuronal cells. Here, we describe that ginsenosides utilize a common pathway of receptor-mediated signaling pathway in Xenopus oocytes: increase in intracellular $Ca^{2+}$ concentration via phospholipase C (PLC) and $Ca^{2+}$ mobilization. Ginsenosides induced a marked and robust artivation of $Ca^{2+}$-activated Cl- channels in Xenopus oocytes. The effect of ginsenosides was completely reversible, in a dose-dependent manner with EC$_{50}$ of 4.4 $\mu\textrm{g}$/mi, and specifically blocked by niflumic acid, an inhibitor of $Ca^{2+}$-activated Cl- channel. Intracellular injection of BAPIA abolished the effect of ginsenosides. Intracellular injection of GTP${\gamma}$S also abolished the effect of ginsenosides. The effect of gin senosides on $Ca^{2+}$-activated Cl- currents was greatly reduced by the intracellular injection of heparin, an IP$_3$ receptorantagonist or the pretreatment of PLC inhibitor. These results indicate that ginsenosides activate endogenous $Ca^{2+}$-activated Cl- channels via the activation of PLC and the release of $Ca^{2+}$ from the IP$_3$-sensitive intracellular store following the initial interaction with membrane component(s) from extracellular side. This signaling pathway of ginsenosides may be one of the action mechanisms for the pharmacological effects of ginseng.ts of ginseng.

  • PDF

Antioxidative and Cytotoxicity Activities against Human Colon Cancer Cells Exhibited by Edible Crude Saponins from Soybean Cake (대두박 식용사포닌의 항산화 및 대장암세포 성장 억제효과)

  • Park, Kyung-Uk;Kim, Jae-Yong;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.754-758
    • /
    • 2009
  • To develop soybean cake as a functional food material, the anti-oxidative and cytotoxic activities against human colon cancer cells of crude saponins isolated from 70% (v/v) ethanol extracts of cake were investigated. The Diaion HP-20 adsorption method was used for isolation of crude saponins, which were then eluted with 100% ethanol. The non-saponin fraction was removed by elution with $H_2O$ and 20% (v/v) ethanol. The results of thin layer chromatography (TLC) analysis confirmed that crude saponins were present in the 100% ethanol extract of soybean cake. The hydrogen-donating properties of saponins were more than 60% at a concentration of $1,000\;{\mu}g/mL$. malondialdehyde(MDA) production was $1,200\;{\mu}mol\;MDA/g$ in mouse liver homogenate treated with crude saponins at the concentration of $1,000\;{\mu}g/mL$. This value was lower than that of the control, which was $3,700\;{\mu}mol\;MDA/g$. Saponins inhibited the growth of colon cancer cells in a dose- and time-dependent manner. Saponins also resulted in a decrease in the proportion of cells in the G1 phase of the cell cycle, whereas the cell proportion in G2/M phase was increased with $1,000\;{\mu}g/mL$ saponins. Thus, we conclude that saponins may induce G2/M cell cycle arrest.

Protodioscin protects porcine oocytes against H2O2-induced oxidative stress during in vitro maturation

  • So-Hee Kim;Seung-Eun Lee;Jae-Wook Yoon;Hyo-Jin Park;Seung-Hwan Oh;Do-Geon Lee;Da-Bin Pyeon;Eun-Young Kim;Se-Pill Park
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.710-719
    • /
    • 2023
  • Objective: The present study investigated whether protodioscin (PD), a steroidal saponin mainly found in rhizome of Dioscorea species, alleviates oxidative stress-induced damage of porcine oocytes during in vitro maturation. Methods: Oocytes were treated with different concentrations of PD (0, 1, 10, 100, and 200 µM) in the presence of 200 µM H2O2 during in vitro maturation. Following maturation, spindle morphology and mitogen-activated protein kinase activity was assessed along with reactive oxygen species level, GSH activity, and mRNA expression of endogenous antioxidant genes at the MII stage. On the day 7 after parthenogenetic activation, blastocyst formation rate was calculated and the quality of embryo and mRNA expression of development-related genes was evaluated. Results: Developmental competence was significantly poorer in the 0 µM PD-treated (control) group than in the non-treated (normal) and 10 µM PD-treated (10PD) groups. Although the reactive oxygen species level did not significantly differ between these three groups, the glutathione level and mRNA expression of antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, nuclear factor erythroid 2-related factor 2 [Nrf2], and hemo oxygenase-1 [HO-1]) were significantly higher in the normal and 10PD groups than in the control group. In addition, the percentage of oocytes with defective spindle and abnormal chromosomal alignment was significantly lower and the ratio of phosphorylated p44/42 to total p44/42 was significantly higher in the normal and 10PD groups than in the control group. The total cell number per blastocyst was significantly higher in the 10PD group than in the control group. The percentage of apoptotic cells in blastocysts was highest in the control group; however, the difference was not significant. mRNA expression of development-related genes (POU domain, class 5, transcription factor 1 [POU5F1], caudal type homeobox 2 [CDX2], Nanog homeobox [NANOG]) was consistently increased by addition of PD. Conclusion: The PD effectively improves the developmental competence and quality of blastocysts by protecting porcine oocytes against oxidative stress.

Chemical Compositions of Fermented Codonopsis lanceolata (발효더덕의 화학성분)

  • Park, Sung-Jin;Seong, Dong-Ho;Park, Dong-Sik;Kim, Seung-Seop;Gou, Jing-Yu;Ahn, Ju-Hee;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.396-400
    • /
    • 2009
  • Dodok (Codonopsis lanceolata Bench. et Hook) root contains abundant pharmaceutical substances and is widely used as a food and a medicinal herb. To identify the major components, fermented Codonopsis lanceolata was analyzed for its chemical compositions prior to their pharmaceutical substances, which were used as the fundamental data. The contents of carbohydrate, crude protein, crude lipid and ash are 79.3%, 13.0%, 2.40% and 5.3%, respectively. The calories of fermented Codonopsis lanceolata was 390.5 kcal. Total dietary fiber was 47.4% of total carbohydrates. The protein was composed of 18 different amino acids. The contents of essential and non-essential amino acids were 8,118.18 mg and 10,913.42 mg. The K was the largest mineral followed by P, Ca and Mg, which means fermented Codonopsis lanceolata is alkali material. The contents of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids were 37.76%, 3.84%, and 35.64%, respectively. Therefore, the amount of the total unsaturated fatty acid was higher than that of any other plant. The content of crude saponin in fermented Codonopsis lanceolata was 60.1 mg/g. It is expected that a follow up study on fermented Codonopsis lanceolata through development and evaluation of processed foods for their functional properties would provide useful information as a source of medicinal foods.

Clinical Applications and Efficacy of Korean Ginseng (고려인삼의 주요 효능과 그 임상적 응용)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.111-131
    • /
    • 2002
  • Korean ginseng (Panax ginseng C.A. Meyer) received a great deal of attention from the Orient and West as a tonic agent, health food and/or alternative herbal therapeutic agent. However, controversy with respect to scientific evidence on pharmacological effects especially, evaluation of clinical efficacy and the methodological approach still remains to be solved. Author reviewed those articles published since 1980 when pharmacodynamic studies on ginseng have intensively started. Special concern was paid on metabolic disorders including diabetes mellitus, circulatory disorders, malignant tumor, sexual dysfunction, and physical and mental performance to give clear information to those who are interested in pharmacological study of ginseng and to promote its clinical use. With respect to chronic diseases such as diabetes mellitus, atherosclerosis, high blood pressure, malignant disorders, and sexual disorders, it seems that ginseng plays preventive and restorative role rather than therapeutics. Particularly, ginseng plays a significant role in ameliorating subjective symptoms and preventing quality of life from deteriorating by long term exposure of chemical therapeutic agents. Also it seems that the potency of ginseng is mild, therefore it could be more effective when used concomitantly with conventional therapy. Clinical studies on the tonic effect of ginseng on work performance demonstrated that physical and mental dysfunction induced by various stresses are improved by increasing adaptability of physical condition. However, the results obtained from clinical studies cannot be mentioned in the indication, which are variable upon the scientist who performed those studies. In this respect, standardized ginseng product and providing planning of the systematic clinical research in double-blind randomized controlled trials are needed to assess the real efficacy for proposing ginseng indication. Pharmacological mode of action of ginseng has not yet been fully elucidated. Pharmacodynamic and pharmacokinetic researches reveal that the role of ginseng not seem to be confined to a given single organ. It has been known that ginseng plays a beneficial role in such general organs as central nervous, endocrine, metabolic, immune systems, which means ginseng improves general physical and mental conditons. Such multivalent effect of ginseng can be attributed to the main active component of ginseng,ginsenosides or non-saponin compounds which are also recently suggested to be another active ingredients. As is generally the similar case with other herbal medicines, effects of ginseng cannot be attributed as a given single compound or group of components. Diversified ingredients play synergistic or antagonistic role each other and act in harmonized manner. A few cases of adverse effect in clinical uses are reported, however, it is not observed when standardized ginseng products are used and recommended dose was administered. Unfavorable interaction with other drugs has also been suggested, which the information on the products and administered dosage are not available. However, efficacy, safety, interaction or contraindication with other medicines has to be more intensively investigated in order to promote clinical application of ginseng. For example, daily recommended doses per day are not agreement as 1-2g in the West and 3-6 g in the Orient. Duration of administration also seems variable according to the purpose. Two to three months are generally recommended to feel the benefit but time- and dose-dependent effects of ginseng still need to be solved from now on. Furthermore, the effect of ginsenosides transformed by the intestinal microflora, and differential effect associated with ginsenosides content and its composition also should be clinically evaluated in the future. In conclusion, the more wide-spread use of ginseng as a herbal medicine or nutraceutical supplement warrants the more rigorous investigations to assess its effacy and safety. In addition, a careful quality control of ginseng preparations should be done to ensure an acceptable standardization of commercial products.